Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591616

ABSTRACT

Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.

2.
Article in English | MEDLINE | ID: mdl-37021894

ABSTRACT

For 3D animators, choreography with artificial intelligence has attracted more attention recently. However, most existing deep learning methods mainly rely on music for dance generation and lack sufficient control over generated dance motions. To address this issue, we introduce the idea of keyframe interpolation for music-driven dance generation and present a novel transition generation technique for choreography. Specifically, this technique synthesizes visually diverse and plausible dance motions by using normalizing flows to learn the probability distribution of dance motions conditioned on a piece of music and a sparse set of key poses. Thus, the generated dance motions respect both the input musical beats and the key poses. To achieve a robust transition of varying lengths between the key poses, we introduce a time embedding at each timestep as an additional condition. Extensive experiments show that our model generates more realistic, diverse, and beat-matching dance motions than the compared state-of-the-art methods, both qualitatively and quantitatively. Our experimental results demonstrate the superiority of the keyframe-based control for improving the diversity of the generated dance motions.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 2009-2023, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35471870

ABSTRACT

Recent works have achieved remarkable performance for action recognition with human skeletal data by utilizing graph convolutional models. Existing models mainly focus on developing graph convolutional operations to encode structural properties of a skeletal graph, whose topology is manually predefined and fixed over all action samples. Some recent works further take sample-dependent relationships among joints into consideration. However, the complex relationships between arbitrary pairwise joints are difficult to learn and the temporal features between frames are not fully exploited by simply using traditional convolutions with small local kernels. In this paper, we propose a motif-based graph convolution method, which makes use of sample-dependent latent relations among non-physically connected joints to impose a high-order locality and assigns different semantic roles to physical neighbors of a joint to encode hierarchical structures. Furthermore, we propose a sparsity-promoting loss function to learn a sparse motif adjacency matrix for latent dependencies in non-physical connections. For extracting effective temporal information, we propose an efficient local temporal block. It adopts partial dense connections to reuse temporal features in local time windows, and enrich a variety of information flow by gradient combination. In addition, we introduce a non-local temporal block to capture global dependencies among frames. Our model can capture local and non-local relationships both spatially and temporally, by integrating the local and non-local temporal blocks into the sparse motif-based graph convolutional networks (SMotif-GCNs). Comprehensive experiments on four large-scale datasets show that our model outperforms the state-of-the-art methods. Our code is publicly available at https://github.com/wenyh1616/SAMotif-GCN.

4.
Water Res ; 177: 115734, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32278165

ABSTRACT

This study first compared the efficiencies and mechanisms of the nitrogen removal in an aerobic sequencing batch biofilm reactor (SBBR) treating mustard tuber wastewater from high salt (30 gNaCl L-1) to ultra-high salt (70 gNaCl L-1). High-efficiency maintaining of nitrification was observed. Despite of high BOD5/TN (5.5-9), distinct denitrification decline for lack of carbon in response to salt stress was observed. Considering the high concentrations of sulfate in mustard wastewater, and the existence of sulfur-reducing bacteria (SRB) and sulfur-driven denitrifiers (DNSOB) in the aerobic SBBR, sulfate reduction-sulfur autotrophic denitrification process is a feasible idea to solve this problem. By modified to intermittent aeration mode, sulfur cycle was developed in SBBR. The average removal efficiency of COD, TN reached 85.20% and 98.56%, respectively. By batch activity tests and microbial community analysis, ammonia oxidation activity by ammonia-oxidizing archaea (AOA) was observed, and high abundance of AOA (Arch-amoA/AOB amoA: 2.38 × 102) together with ammonia-oxidizing bacteria (AOB) of Nitrosomonas_halophila (1.23%) ensured the high efficient nitrification. After running mode change, specific sulfur-driven NO3--N reduction rate increased and the abundance of dominant SRB and DNSOB rose from 3.95% to 10.79% and 2.22% to 9.95%, respectively. The sulfate-reducing process during anaerobic phase provided electron donors for subsequent autotrophic denitrification, making outlet NO3--N concentrations reduced from 18.26 mg L-1 to 1.93 mg L-1. The sulfur activity batch test showed that 73.80%∼80.92% of sulfate were circulation utilized, and rest of them conversed to the gaseous H2S and S0. In addition to DNSOB, anoxic denitrifier of Halomonas (22.91%), aerobic denitrifier of Phaeodactylibacter (2.75%) and endogenous denitrifier of Defluviicoccus (3.18%) were also dominant heterotrophic bacteria (all halophilic or halotolerant) in the intermittent aeration SBBR. Batch activity tests and periodic laws have also verified the existence of corresponding denitrification pathways. This study shows that the enrichment of special halophilic functional bacteria with multiple nitrogen removal pathways is a good idea for the efficient treatment of high-concentrated hypersaline industrial wastewater.


Subject(s)
Nitrogen , Wastewater , Ammonia , Biofilms , Bioreactors , Denitrification , Mustard Plant , Nitrification
5.
Chemosphere ; 200: 274-282, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29494908

ABSTRACT

In the current study, we conducted a field experiment using the test plant, Brassica chinesis L. (pak choi), to investigate the effect of sugarcane bagasse-derived biochar on the bioavailability of cadmium (Cd), copper (Cu) and lead (Pb), and the health of soil microbiota in a contaminated soil. Biochar application significantly (P < 0.05) increased pak choi yield. Bioavailability of heavy metals to plant shoots and roots decreased with increasing biochar application rates (at 0, 1.5, 2.25 and 3.0 t ha-1). Sequential extraction of the biochar-treated and -untreated soil revealed that exchangeable Cd reduced whereas organically-bound fraction increased with increasing biochar rate. The labile fractions of Cu and Pb decreased, but the residual fraction increased in biochar-treated soils compared to the control. Urease, catalase and invertase activities, and the populations of bacteria and actinomycetes were significantly enhanced, whereas fungi population declined in biochar-treated soils. This study highlights that sugarcane bagasse biochar has the potential to support the remediation of soils contaminated with heavy metals, and as such can improve the yield and quality of agricultural crops.


Subject(s)
Brassica/drug effects , Cellulose/chemistry , Charcoal/pharmacology , Environmental Pollution/prevention & control , Metals, Heavy/toxicity , Saccharum/chemistry , Soil Microbiology/standards , Biological Availability , Brassica/growth & development , Brassica/microbiology , Cadmium/analysis , Environmental Restoration and Remediation , Metals, Heavy/analysis , Plant Roots/metabolism , Saccharum/metabolism , Soil Pollutants/analysis , Urease/metabolism
6.
Gait Posture ; 60: 99-103, 2018 02.
Article in English | MEDLINE | ID: mdl-29175641

ABSTRACT

Variability of kinematic measures determined by different marker sets among sites participating in a collaborative study is necessary for determining the reliability of a multi-site gait analysis research. We compared knee kinematics based on different marker sets on the tibia, calculating by segmental optimization (SO) and multi-body optimization (MBO) methods respectively, in order to assess the effect of marker locations on the methods. 11 healthy subjects participated in the study with 33 markers attached to the lower extremity segments, and 4 groups were identified according to markers on the tibia. Knee joint kinematics during level walking were measured and then compared among the 4 groups using statistical parametric mapping. For SO method, the results showed that there were no significant differences in the knee joint angles when used different marker sets on the tibia. However, significant differences were found in the transverse plane kinematics for MBO method. It was concluded that MBO method was more likely to be influenced by different marker sets. More attention should be paid to marker sets, specifically for MBO method, when three-dimensional gait analysis data are shared and interpreted among sites for clinical decision-making.


Subject(s)
Gait/physiology , Knee Joint/physiology , Range of Motion, Articular/physiology , Walking/physiology , Adult , Biomechanical Phenomena/physiology , Humans , Male , Reproducibility of Results , Tibia/physiology
7.
Bioresour Technol ; 243: 708-715, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28710998

ABSTRACT

A simultaneous nitrification and denitrification (SND) process in sequencing batch biofilm reactor (SBBR) was established to treat high carbon and nitrogen saline wastewater in this study. Acetate, glucose and an organic mixture were applied as organic sources in three SBBRs, achieving average total nitrogen removal efficiency of 97.15%, 63.94% and 94.99% during 120days' operation, respectively. The underlying nitrogen removal mechanisms were investigated by 16S rRNA sequencing and batch tests. Results showed different carbon sources had great impact on microbial communities, and led to different nitrogen removal mechanism. Autotrophic and heterotrophic nitrification together contributed to the well performance of nitrification process. And denitrification was carried out by a combined anoxic and aerobic denitrificans. Furthermore, the SND process was mainly via nitrite not nitrate. Compared with ammonia-oxidizing bacteria, ammonia-oxidizing archaea with a much higher abundance contributed more to autotrophic nitrification. Pseudomonas_stutzeri and Bacillus_cereus were the predominant detected heterotrophic nitrification-aerobic denitrification bacterium.


Subject(s)
Denitrification , Wastewater , Bioreactors , Carbon , Nitrification , Nitrogen , RNA, Ribosomal, 16S
8.
J Cell Sci ; 128(23): 4279-92, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26483382

ABSTRACT

Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop-exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments.


Subject(s)
Dendrites/metabolism , Drosophila Proteins/metabolism , Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Cell Line , Dendrites/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Exocytosis , Munc18 Proteins/genetics , Nerve Tissue Proteins/genetics
9.
Mol Cell Neurosci ; 52: 140-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23159780

ABSTRACT

The selective degeneration of dendrites precedes neuronal cell death in hypoxia-ischemia (HI) and is a neuropathological hallmark of stroke. While it is clear that a number of different molecular pathways likely contribute to neuronal cell death in HI, the mechanisms that govern HI-induced dendrite degeneration are largely unknown. Here, we show that the NAD synthase nicotinamide mononucleotide adenylyltransferase (Nmnat) functions endogenously to protect Drosophila class IV dendritic arborization (da) sensory neurons against hypoxia-induced dendritic damage. Whereas dendrites of wild-type class IV neurons are largely resistant to morphological changes during prolonged periods of hypoxia (<1.0% O(2)), class IV neurons of nmnat heterozygous mutants exhibit significant dendrite loss and extensive fragmentation of the dendritic arbor under the same hypoxic conditions. Although basal levels of autophagy are required for neuronal survival, we demonstrate that autophagy is dispensable for maintaining the dendritic integrity of class IV neurons. However, we find that genetically blocking autophagy can suppress hypoxia-induced dendrite degeneration of nmnat heterozygous mutants in a cell-autonomous manner, suggestive of a self-destructive role for autophagy in this context. We further show that inducing autophagy by overexpression of the autophagy-specific kinase Atg1 is sufficient to cause dendrite degeneration of class IV neurons under hypoxia and that overexpression of Nmnat fails to protect class IV dendrites from the effects of Atg1 overexpression. Our studies reveal an essential neuroprotective role for endogenous Nmnat in hypoxia and demonstrate that Nmnat functions upstream of autophagy to mitigate the damage incurred by dendrites in neurons under hypoxic stress.


Subject(s)
Autophagy/physiology , Dendrites/metabolism , Hypoxia/metabolism , Nerve Degeneration/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Animals , Dendrites/pathology , Drosophila , Gene Knockdown Techniques , Hypoxia/pathology , Microscopy, Confocal
10.
Mol Cell Neurosci ; 48(1): 1-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21596138

ABSTRACT

Dendrites can be maintained for extended periods of time after they initially establish coverage of their receptive field. The long-term maintenance of dendrites underlies synaptic connectivity, but how neurons establish and then maintain their dendritic arborization patterns throughout development is not well understood. Here, we show that the NAD synthase Nicotinamide mononucleotide adenylyltransferase (Nmnat) is cell-autonomously required for maintaining type-specific dendritic coverage of Drosophila dendritic arborization (da) sensory neurons. In nmnat heterozygous mutants, dendritic arborization patterns of class IV da neurons are properly established before increased retraction and decreased growth of terminal branches lead to progressive defects in dendritic coverage during later stages of development. Although sensory axons are largely intact in nmnat heterozygotes, complete loss of nmnat function causes severe axonal degeneration, demonstrating differential requirements for nmnat dosage in the maintenance of dendritic arborization patterns and axonal integrity. Overexpression of Nmnat suppresses dendrite maintenance defects associated with loss of the tumor suppressor kinase Warts (Wts), providing evidence that Nmnat, in addition to its neuroprotective role in axons, can function as a protective factor against progressive dendritic loss. Moreover, motor neurons deficient for nmnat show progressive defects in both dendrites and axons. Our studies reveal an essential role for endogenous Nmnat function in the maintenance of both axonal and dendritic integrity and present evidence of a broad neuroprotective role for Nmnat in the central nervous system.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Neuroprotective Agents/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Animals , Axons/physiology , Axons/ultrastructure , Dendrites/physiology , Dendrites/ultrastructure , Drosophila Proteins/genetics , Humans , Motor Neurons/cytology , Nicotinamide-Nucleotide Adenylyltransferase/genetics
11.
Dev Biol ; 336(2): 213-21, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19818341

ABSTRACT

Precise patterns of motor neuron connectivity depend on the proper establishment and positioning of the dendritic arbor. However, how different motor neurons orient their dendrites to selectively establish synaptic connectivity is not well understood. The Drosophila neuromuscular system provides a simple model to investigate the underlying organizational principles by which distinct subclasses of motor neurons orient their dendrites within the central neuropil. Here we used genetic mosaic techniques to characterize the diverse dendritic morphologies of individual motor neurons from five main nerve branches (ISN, ISNb, ISNd, SNa, and SNc) in the Drosophila larva. We found that motor neurons from different nerve branches project their dendrites to largely stereotyped mediolateral domains in the dorsal region of the neuropil providing full coverage of the receptive territory. Furthermore, dendrites from different motor neurons overlap extensively, regardless of subclass, suggesting that repulsive dendrite-dendrite interactions between motor neurons do not influence the mediolateral positioning of dendritic fields. The anatomical data in this study provide important information regarding how different subclasses of motor neurons organize their dendrites and establishes a foundation for the investigation of the mechanisms that control synaptic connectivity in the Drosophila motor circuit.


Subject(s)
Body Patterning , Dendrites , Drosophila/embryology , Motor Neurons/cytology , Animals , Immunohistochemistry
12.
J Mol Biol ; 392(5): 1158-67, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19651143

ABSTRACT

The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an approximately 13-16% increase in maximal Ca(2+)-activated force and ATPase activity compared to hcTnI wild-type transgenic mice. The force-generating cross-bridge turnover rate (g) and the energy cost (ATPase/force) were the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca(2+) sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca(2+)] transients and increased time to peak force. Analysis of force and Ca(2+) transients showed that there was a 40% increase in peak force in Tg-R145W muscles, which was likely due to the increased Ca(2+) transient duration. The above cited results suggest that: (1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca(2+) transients that would result in a decrease in ventricular filling (diastolic dysfunction); and (2) there would be a large (approximately 53%) increase in force during systole, which may help to partly compensate for diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to a restrictive phenotype.


Subject(s)
Amino Acid Substitution/genetics , Cardiomyopathy, Restrictive/genetics , Mutation, Missense , Troponin I/genetics , Adenosine Triphosphate/metabolism , Animals , Humans , Mice , Mice, Transgenic , Myocardial Contraction , Myofibrils/physiology
13.
J Biol Chem ; 283(29): 20484-94, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18430738

ABSTRACT

In this study, we addressed the functional consequences of the human cardiac troponin I (hcTnI) hypertrophic cardiomyopathy R145G mutation in transgenic mice. Simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145G transgenic mice (Tg-R145G) versus hcTnI wild type transgenic mice (Tg-WT) showed a significant decrease in the maximal Ca(2+)-activated force without changes in the maximal ATPase activity and an increase in the Ca(2+) sensitivity of both ATPase and force development. No difference in the cross-bridge turnover rate was observed at the same level of cross-bridge attachment (activation state), showing that changes in Ca(2+) sensitivity were not due to changes in cross-bridge kinetics. Energy cost calculations demonstrated higher energy consumption in Tg-R145G fibers compared with Tg-WT fibers. The addition of 3 mm 2,3-butanedione monoxime at pCa 9.0 showed that there was approximately 2-4% of force generating cross-bridges attached in Tg-R145G fibers compared with less than 1.0% in Tg-WT fibers, suggesting that the mutation impairs the ability of the cardiac troponin complex to fully inhibit cross-bridge attachment under relaxing conditions. Prolonged force and intracellular [Ca(2+)] transients in electrically stimulated intact papillary muscles were observed in Tg-R145G compared with Tg-WT. These results suggest that the phenotype of hypertrophic cardiomyopathy is most likely caused by the compensatory mechanisms in the cardiovascular system that are activated by 1) higher energy cost in the heart resulting from a significant decrease in average force per cross-bridge, 2) slowed relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)] and force transients, and 3) an inability of the cardiac TnI to completely inhibit activation in the absence of Ca(2+) in Tg-R145G mice.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Troponin I/metabolism , Adenosine Triphosphatases/metabolism , Animals , Arginine/genetics , Arginine/metabolism , Body Weight , Calcium/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Mutation/genetics , Organ Size , Troponin I/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...