Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 271(Pt 2): 132507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768920

ABSTRACT

This study employed an anionic heteropolysaccharide extracted from overgrown Enteromorpha and homopolysaccharide pullulan to fabricate a self-floating hydrogel by introducing bubble templates. Subsequently, green in-situ reduction and immobilization of silver nanoparticles (Ag NPs) in the hydrogel were successfully achieved without additional reducing agents. The heteropolysaccharide from Enteromorpha provides carboxyl and sulfate groups for Ag+ ions complexation, which is beneficial for the in-situ reduction of Ag NPs and inhibits their aggregation. The incorporation of bubble templates facilitates the creation of a hierarchical pore structure in the hydrogel, giving it self-floating properties for easy recycling, while the hierarchical network with rich anchor sites ensuring adequate traction for Ag NPs dispersion and stabilization. By adjusting polysaccharide content and using bubble templates, Ag NPs smaller than 10 nm can be obtained. The composite hydrogel exhibits tunable catalytic activity and excellent degradation towards Rhodamine B, Methyl Orange, and 4-Nitrophenol, with the normalized rate constant (knor) of 78.89, 59.08, and 30.42 min-1 g-1, respectively. Notably, the reduction efficiency remained above 98 % after 6 recycles with little leaching of Ag NPs, benefiting from its self-floating ability for easy recovery in practical applications.


Subject(s)
Green Chemistry Technology , Hydrogels , Metal Nanoparticles , Polysaccharides , Silver , Hydrogels/chemistry , Catalysis , Silver/chemistry , Polysaccharides/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Nitrophenols/chemistry , Rhodamines/chemistry , Oxidation-Reduction , Azo Compounds/chemistry
2.
Mol Ther Oncol ; 32(2): 200790, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38595980

ABSTRACT

N5-methylcytosine (m5C) methylation modification plays a crucial role in the epigenetic mechanisms underlying tumorigenesis, aggressiveness, and malignancy in diffuse glioma. Our study aimed to develop a novel prognostic risk-scoring system to assess the impact of m5C modification in glioma patients. Initially, we identified two distinct m5C clusters based on the expression level of m5C regulators in The Cancer Genome Atlas glioblastoma (TCGA-GBM) dataset. Differentially expressed genes (DEGs) between the two m5C cluster groups were determined. Utilizing these m5C regulation-related DEGs, we classified glioma patients into three gene cluster groups: A, B, and C. Subsequently, an m5C scoring system was developed through a univariate Cox regression model, quantifying the m5C modification patterns utilizing six DEGs associated with disease prognosis. The resulting scoring system allowed us to categorize patients into high- or low-risk groups based on their m5C scores. In test (TCGA-GBM) and validation (Chinese Glioma Genome Atlas [CGGA]-1018 and CGGA-301) datasets, glioma patients with a higher m5C score consistently exhibited shorter survival durations, fewer isocitrate dehydrogenase (IDH) mutations, less 1p/19q codeletion and higher World Health Organization (WHO) grades. Additionally, distinct immune cell infiltration characteristics were observed among different m5C cluster groups and risk groups. Our study developed a novel prognostic scoring system based on m5C modification patterns for glioma patients, complementing existing molecular classifications and providing valuable insights into prognosis for glioma patients.

3.
ACS Omega ; 7(45): 41189-41200, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406577

ABSTRACT

Understanding the adsorption state and molecular behavior of the diverse components of shale oil in shale slits is of critical importance for exploring novel enhanced shale oil recovery techniques, but it is hard to be achieved by experimental measurements. In this paper, molecular dynamics (MD) simulations are performed to quantitatively describe the microbehavior of shale oil mixtures containing different kinds of hydrocarbon components, including asphaltene, in quartz slits. The spatial distributions of all the presenting components are given, the interaction energy between the components and quartz is analyzed, and the diffusion coefficients of all the components are calculated. It was found that asphaltene molecules play a vitally important role in restricting the detachment and diffusion movement of all hydrocarbon components, which is actually a key problem limiting the recovery efficiency of shale oil. The effects of temperature, slit aperture, and the appearance of CO2 on the adsorption behavior of the different shale oil components are examined; the results suggest that the light and medium components are the fractions with the most potential in thermal exploitation, while injection of CO2 is beneficial for the extraction of all the components, especially the medium components. This work gives insights into the effect of asphaltene on shale oil recovery in quartz slits and might provide guidance on the utilization of thermal and CO2-enhanced enhanced oil recovery (EOR) techniques in shale oil production.

4.
J Hazard Mater ; 419: 126441, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34175706

ABSTRACT

Three-dimensional graphene aerogel shows a wide application in many frontier domains, which have attracted extensive research interest owing to its large specific surface area and high porosity. However, it is still a great challenge to construct the ideal hierarchical pore structure while guaranteeing excellent absorption and mechanical performance. In this paper, inspired by the bio-based porous material, a hierarchical graphene aerogel with inter-connected micro-/nano-scale pore structure was constructed. The micro and nano-scale pores are generated by the bubble and nanoparticles (NPs) template, respectively. The resulting graphene aerogel (GA) presents low density, increased interfacial areas, high mechanical performance, and excellent absorption performance towards a mass of organic solvents. In combination with its high compressibility, a diverse organic solvent can be absorbed efficiently and recycled by extrusion conveniently. Besides, owing to the scattered hydrophilic sites of functional groups and NPs on the surface of GA-b/NP, it shows high adhesion properties for water droplets, thus presents great potential in high-efficiency fog collecting materials. In a word, the proposed approach presents a novel strategy for the construction of the hierarchical aerogel with light-weight and elasticity, as well as the achievement of efficient functionalization, which has great potential for the preparation of diverse functional composites.


Subject(s)
Environmental Pollutants , Graphite , Water Pollutants, Chemical , Water Purification , Porosity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...