Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6681): eadj1817, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271529

ABSTRACT

The optimization, intensification, and scale-up of photochemical processes constitute a particular challenge in a manufacturing environment geared primarily toward thermal chemistry. In this work, we present a versatile flow-based robotic platform to address these challenges through the integration of readily available hardware and custom software. Our open-source platform combines a liquid handler, syringe pumps, a tunable continuous-flow photoreactor, inexpensive Internet of Things devices, and an in-line benchtop nuclear magnetic resonance spectrometer to enable automated, data-rich optimization with a closed-loop Bayesian optimization strategy. A user-friendly graphical interface allows chemists without programming or machine learning expertise to easily monitor, analyze, and improve photocatalytic reactions with respect to both continuous and discrete variables. The system's effectiveness was demonstrated by increasing overall reaction yields and improving space-time yields compared with those of previously reported processes.

2.
Chem Sci ; 14(16): 4230-4247, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37123197

ABSTRACT

Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.

3.
Nat Commun ; 13(1): 6147, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36257941

ABSTRACT

Photocatalytic hydrogen atom transfer (HAT) processes have been the object of numerous studies showcasing the potential of the homogeneous photocatalyst tetrabutylammonium decatungstate (TBADT) for the functionalization of C(sp3)-H bonds. However, to translate these studies into large-scale industrial processes, careful considerations of catalyst loading, cost, and removal are required. This work presents organic solvent nanofiltration (OSN) as an answer to reduce TBADT consumption, increase its turnover number and lower its concentration in the product solution, thus enabling large-scale photocatalytic HAT-based transformations. The operating parameters for a suitable membrane for TBADT recovery in acetonitrile were optimized. Continuous photocatalytic C(sp3)-H alkylation and amination reactions were carried out with in-line TBADT recovery via two OSN steps. Promisingly, the observed product yields for the reactions with in-line catalyst recycling are comparable to those of reactions performed with pristine TBADT, therefore highlighting that not only catalyst recovery (>99%, TON > 8400) is a possibility, but also that it does not happen at the expense of reaction performance.

4.
ACS Cent Sci ; 8(1): 51-56, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35106372

ABSTRACT

Carbon-nitrogen bonds are ubiquitous in biologically active compounds, prompting synthetic chemists to design various methodologies for their preparation. Arguably, the ideal synthetic approach is to be able to directly convert omnipresent C-H bonds in organic molecules, enabling even late-stage functionalization of complex organic scaffolds. While this approach has been thoroughly investigated for C(sp2)-H bonds, only few examples have been reported for the direct amination of aliphatic C(sp3)-H bonds. Herein, we report the use of a newly developed flow photoreactor equipped with high intensity chip-on-board LED technology (144 W optical power) to trigger the regioselective and scalable C(sp3)-H amination via decatungstate photocatalysis. This high-intensity reactor platform enables simultaneously fast results gathering and scalability in a single device, thus bridging the gap between academic discovery (mmol scale) and industrial production (>2 kg/day productivity). The photocatalytic transformation is amenable to the conversion of both activated and nonactivated hydrocarbons, leading to protected hydrazine products by reaction with azodicarboxylates. We further validated the robustness of our manifold by designing telescoped flow approaches for the synthesis of pyrazoles, phthalazinones and free amines.

5.
ChemSusChem ; 14(23): 5265-5270, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34529334

ABSTRACT

The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research.

6.
Org Process Res Dev ; 24(10): 2356-2361, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33100815

ABSTRACT

Tetrabutylammonium decatungstate (TBADT) has emerged as an efficient and versatile photocatalyst for hydrogen atom transfer (HAT) processes that enables the cleavage of both activated and unactivated aliphatic C-H bonds. Using a recently developed oscillatory millistructured continuous-flow photoreactor, investigations of a decatungstate-catalyzed C(sp3)-H alkylation protocol were carried out, and the results are presented here. The performance of the reactor was evaluated in correlation to several chemical and process parameters, including residence time, light intensity, catalyst loading, and substrate/reagent concentration. In comparison with previously reported batch and flow protocols, conditions were found that led to considerably higher productivity, achieving a throughput up to 36.7 mmol/h with a residence time of only 7.5 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...