Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 176: 116847, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823277

ABSTRACT

Luteolin, a monomeric substance, is a natural product of the Brucea javanica (BJ) plant. Brucea javanica oil emulsion injection (BJOEI) is a proprietary Chinese medicine purified from BJ that is widely used clinically as an anti-tumor treatment. Although a growing body of research suggests that luteolin and BJOEI have anti-tumor effects, the molecular mechanism of action has not been fully elucidated. In this study, through molecular docking technology, we found that luteolin can interact directly with GPSM2 and regulate the FoxO signaling pathway through GPSM2. In addition, the inhibitory effect of luteolin on colon adenocarcinoma (COAD) cells was found to be offset by knockdown of GPSM2. In contrast, the anti-proliferative effects of luteolin could be notably reversed by overexpression of GPSM2. The results reveal that GPSM2 is crucial in luteolin-mediated anti-proliferative effects. The mediation of anti-proliferative effects by GPSM2 has also been indirectly demonstrated in RKO and SW480 xenograft mice models. In addition, we verified that BJOEI inhibits the progression of COAD by mediating GPSM2 and regulating the FoxO signaling pathway. We also found that BJOEI achieved a better anti-tumor effect when combined with fluorouracil injection. Collectively, our data show that the anti-tumor effects of BJOEI and luteolin on COAD are GPSM2-dependent and downregulating the expression of GPSM2 to regulate the FoxO signaling pathway may be an effective way to treat COAD.


Subject(s)
Adenocarcinoma , Cell Proliferation , Colonic Neoplasms , Fluorouracil , Luteolin , Mice, Nude , Luteolin/pharmacology , Humans , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Fluorouracil/pharmacology , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Signal Transduction/drug effects , Mice , Biological Products/pharmacology , Biological Products/isolation & purification , Biological Products/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Molecular Docking Simulation
2.
Pathol Res Pract ; 238: 154027, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36084426

ABSTRACT

Prosaposin (PSAP) plays a critical role in sphingolipid and cancer metabolism. Reports have shown that PSAP was involved in proliferation, tumorigenesis, and metastasis. However, the expression pattern of PSAP and its prognostic roles in gastric cancer remain elusive. PSAP expression pattern and its prognostic roles in gastric cancer (GC) were explored using data from the TCGA and Kaplan-Meier Plotter. Immunohistochemical staining of GC tissues was performed to validate the prognostic role of PSAP. TISIDB was used to analyze its correlation with immunomodulators. PSAP-associated genes, PDCD1, TGFB1, and CSF1R were used to build a risk model to evaluate immunotherapy outcomes of patients with stomach adenocarcinoma (STAD). Results showed that PSAP was highly expressed in GC. High PSAP expression in GC patients also significantly indicated a poor prognosis. The results of immunohistochemical staining showed that PSAP was an independent prognostic factor in GC patients. Based on three PSAP-associated genes, a risk model that could predict the prognosis and immunotherapy outcome of STAD was bulit. PSAP was an independent prognostic factor in GC. Our results have identified three prognosis-related genes which were useful to evaluate immunotherapy outcomes of STAD patients.

3.
Front Oncol ; 11: 745590, 2021.
Article in English | MEDLINE | ID: mdl-34745968

ABSTRACT

Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein-protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of -8.121 kcal/mol were close to the known CDK1 inhibitor (-8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.

4.
FASEB J ; 35(5): e21601, 2021 05.
Article in English | MEDLINE | ID: mdl-33913201

ABSTRACT

Peritoneal dissemination threatens the survival of patients with gastric cancer (GC). Bufalin is an extract of traditional Chinese medicine, which has been proved to have anticancer effect. The target of bufalin in suppressing gastric cancer peritoneal dissemination (GCPD) and the underlying mechanism are still unclear. In this research, GC cell line MGC-803 and high-potential peritoneal dissemination cell line MKN-45P were treated with bufalin or L-NAME. Malignant biological behavior and protein level of GC cell lines were detected with MTT, wound healing, transwell, adhesion, and western blotting. Bioinformatics analysis and patient tissues were used to verify the role of endothelial nitric oxide synthase (NOS3) in GC. Mice model was used to assess the effect of bufalin and role of NOS3 in vivo. We found that bufalin inhibited the proliferation, invasion, and migration in GC cell lines. NOS3, which was an independent prognostic factor of GC patients, was predicted to be a potential target of bufalin. Further experiments proved that bufalin reduced the phosphorylation of NOS3, thereby inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, and ultimately suppressed GCPD by inhibiting EMT process. In conclusion, NOS3 was a potential therapeutic target and prognostic biomarker of GC. Bufalin could suppress GCPD through NOS3-MAPK signaling pathway, which provided more evidence support for intraperitoneal perfusion of bufalin to treat GCPD.


Subject(s)
Biomarkers, Tumor/metabolism , Bufanolides/pharmacology , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Peritoneal Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinases/genetics , Nitric Oxide Synthase Type III/genetics , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Pathol Res Pract ; 216(9): 153101, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32825966

ABSTRACT

Synaptotagmin 7 (SYT7) can encode a single-pass 46-kDa transmembrane protein which located on human chromosome 11q12.2. It has been reported to be dysregulated in several cancers; however, there are few reports on the role of SYT7 in non-small cell lung carcinoma (NSCLC). The purpose of our study was to investigate the expression of SYT7 in NSCLC and its relationship with the prognosis of NSCLC. Differences in SYT7 expression were explored by using a public database and tissue samples. The prognostic value of SYT7 and its expression correlation with clinical parameters were evaluated by statistical analysis. Our current study found that elevated mRNA and protein levels of SYT7 in NSCLC tissues compared to adjacent normal tissues. The high expression of SYT7 in NSCLC patients was positively correlated with tumour differentiation (P = 0.031) and pT (P = 0.041). The higher SYT7 expression had a shorter survival time than those with lower SYT7 expression in NSCLC patients. Furthermore, multivariate analysis demonstrated that the expression of SYT7 was an unfavourable independent prognostic factor for NSCLC (P = 0.044). In conclusion, SYT7 was upregulated in NSCLC tissues and maybe a prognostic and diagnostic factor of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/metabolism , Synaptotagmins/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Synaptotagmins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...