Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1384931, 2024.
Article in English | MEDLINE | ID: mdl-38947887

ABSTRACT

Objective: This study aims to construct a predictive model based on machine learning algorithms to assess the risk of prolonged hospital stays post-surgery for colorectal cancer patients and to analyze preoperative and postoperative factors associated with extended hospitalization. Methods: We prospectively collected clinical data from 83 colorectal cancer patients. The study included 40 variables (comprising 39 predictor variables and 1 target variable). Important variables were identified through variable selection via the Lasso regression algorithm, and predictive models were constructed using ten machine learning models, including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, Light Gradient Boosting Machine, KNN, and Extreme Gradient Boosting, Categorical Boosting, Artificial Neural Network and Deep Forest. The model performance was evaluated using Bootstrap ROC curves and calibration curves, with the optimal model selected and further interpreted using the SHAP explainability algorithm. Results: Ten significantly correlated important variables were identified through Lasso regression, validated by 1000 Bootstrap resamplings, and represented through Bootstrap ROC curves. The Logistic Regression model achieved the highest AUC (AUC=0.99, 95% CI=0.97-0.99). The explainable machine learning algorithm revealed that the distance walked on the third day post-surgery was the most important variable for the LR model. Conclusion: This study successfully constructed a model predicting postoperative hospital stay duration using patients' clinical data. This model promises to provide healthcare professionals with a more precise prediction tool in clinical practice, offering a basis for personalized nursing interventions, thereby improving patient prognosis and quality of life and enhancing the efficiency of medical resource utilization.

2.
Front Neurol ; 15: 1391382, 2024.
Article in English | MEDLINE | ID: mdl-38694771

ABSTRACT

Intracranial aneurysm is a high-risk disease, with imaging playing a crucial role in their diagnosis and treatment. The rapid advancement of artificial intelligence in imaging technology holds promise for the development of AI-based radiomics predictive models. These models could potentially enable the automatic detection and diagnosis of intracranial aneurysms, assess their status, and predict outcomes, thereby assisting in the creation of personalized treatment plans. In addition, these techniques could improve diagnostic efficiency for physicians and patient prognoses. This article aims to review the progress of artificial intelligence radiomics in the study of intracranial aneurysms, addressing the challenges faced and future prospects, in hopes of introducing new ideas for the precise diagnosis and treatment of intracranial aneurysms.

3.
Med Phys ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775791

ABSTRACT

BACKGROUND: In radiotherapy, the delineation of the gross tumor volume (GTV) in brain metastases using computed tomography (CT) simulation localization is very important. However, despite the criticality of this process, a pronounced gap exists in the availability of tools tailored for the automatic segmentation of the GTV based on CT simulation localization images. PURPOSE: This study aims to fill this gap by devising an effective tool specifically for the automatic segmentation of the GTV using CT simulation localization images. METHODS: A dual-network generative adversarial network (GAN) architecture was developed, wherein the generator focused on refining CT images for more precise delineation, and the discriminator differentiated between real and augmented images. This architecture was coupled with the Mask R-CNN model to achieve meticulous GTV segmentation. An end-to-end training process facilitated the integration between the GAN and Mask R-CNN functionalities. Furthermore, a conditional random field (CRF) was incorporated to refine the initial masks generated by the Mask R-CNN model to ensure optimal segmentation accuracy. The performance was assessed using key metrics, namely, the Dice coefficient (DSC), intersection over union (IoU), accuracy, specificity, and sensitivity. RESULTS: The GAN+Mask R-CNN+CRF integration method in this study performs well in GTV segmentation. In particular, the model has an overall average DSC of 0.819 ± 0.102 and an IoU of 0.712 ± 0.111 in the internal validation. The overall average DSC in the external validation data is 0.726 ± 0.128 and the IoU is 0.640 ± 0.136. It demonstrates favorable generalization ability. CONCLUSION: The integration of the GAN, Mask R-CNN, and CRF optimization provides a pioneering tool for the sophisticated segmentation of the GTV in brain metastases using CT simulation localization images. The method proposed in this study can provide a robust automatic segmentation approach for brain metastases in the absence of MRI.

4.
Front Immunol ; 15: 1338922, 2024.
Article in English | MEDLINE | ID: mdl-38426100

ABSTRACT

This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-ß) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.


Subject(s)
Artificial Intelligence , Radiation Injuries , Humans , Epigenesis, Genetic , Quality of Life , Fibrosis , Transforming Growth Factor beta/metabolism , Radiation Injuries/genetics
5.
Front Neurol ; 15: 1321923, 2024.
Article in English | MEDLINE | ID: mdl-38327618

ABSTRACT

Objective: The objective of this study is to develop a model to predicts the postoperative Hunt-Hess grade in patients with intracranial aneurysms by integrating radiomics and deep learning technologies, using preoperative CTA imaging data. Thereby assisting clinical decision-making and improving the assessment and prognosis of postoperative neurological function. Methods: This retrospective study encompassed 101 patients who underwent aneurysm embolization surgery. 851 radiomic features were extracted from CTA images. 512 deep learning features are extracted from last layer of ResNet50 deep convolutional neural network model. The feature screening process pipeline encompassed intraclass correlation coefficient analysis, principal component analysis, U test, spearman correlation analysis, minimum redundancy maximum relevance algorithm and Lasso regression, to identify features most correlated with postoperative Hunt-Hess grading. In the model construction phase, three distinct models were constructed: radiomics feature-based model (RSM), deep learning feature-based model (DLM), and deep learning-radiomics feature fusion model (DLRSCM). The study also calculated the radiomics score and combined it with clinical data to construct a Nomogram for predictive modeling. DLM, RSM and DLRSCM model was constructed by 9 base algorithms and 1 ensemble learning algorithm - Stacking ensemble model. Model performance was evaluated based on the area under the Receiver Operating Characteristic (ROC) curve (AUC), Matthews Correlation Coefficient (MCC), calibration curves, and decision curves analysis. Results: 5 significant radiomic feature and 4 significant deep learning features were obtained through the feature selection process. These features were utilized for model construction. Bootstrap resampling method was used for internal validation of the models. In terms of model evaluation, the DLM model, the stacking ensemble algorithm results achieved an AUC of 0.959 and MCC of 0.815. In the RSM model, the stacking ensemble model AUC was 0.935 and MCC was 0.793. The stacking ensemble model in DLRSCM outperformed others, with an AUC of 0.968 and MCC of 0.820. Results indicated that the ANN performed optimally among all base models, while the stacked ensemble learning model exhibited the highest predictive performance. Conclusion: This study demonstrates that the combination of radiomics and deep learning is an effective approach to predict the postoperative Hunt-Hess grade in patients with intracranial aneurysms. This holds significant value in the early identification of postoperative neurological complications and in enhancing clinical decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL
...