Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8667, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622239

ABSTRACT

Real-time monitoring of broken rails in heavy haul railways is crucial for ensuring the safe operation of railway lines. U78CrV steel is a common material used for heavy haul line rails in China. In this study, the semi-analytical finite element (SAFE) method is employed to calculate the dispersion curves and modal shapes of ultrasonic guided waves in U78CrV heavy steel rails. Guided wave modes that are suitable for detecting rail cracks across the entire cross-section are selected based on the total energy of each mode and the vibration energy in the rail head, web, and foot. The excitation method for the chosen mode is determined by analyzing the energy distribution of the mode shape on the rail surface. The ultrasonic guided wave (UGW) signal in the rail is analyzed using ANSYS three-dimensional finite element simulation. The group velocity of the primary mode in the guided wave signal is obtained through continuous wavelet transform to confirm the existence of the selected mode. It is validated that the selected mode can be excited by examining the similarity between the vibration shapes of a specific rail section and all modal vibration shapes obtained through SAFE. Through simulation and field verification, the guided wave mode selected and excited in this study demonstrates good sensitivity to cracks at the rail head, web, and foot, and it can propagate over distances exceeding 1 km in the rail. By detecting the reflected signal of the selected mode or the degree of attenuation of the transmitted wave, long-distance monitoring of broken rails in heavy-haul railway tracks can be achieved.

2.
ACS Nano ; 17(23): 24200-24217, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37991848

ABSTRACT

Most existing vaccines, delivered by intramuscular injection (IM), are typically associated with stringent storage requirements under cold-chain distribution and professional administration by medical personnel and often result in the induction of weak mucosal immunity. In this context, we reported a microneedle (MN) patch to deliver chitosan oligosaccharide (COS)-encapsulated DNA vaccines (DNA@COS) encoding spike and nucleocapsid proteins of SARS-CoV-2 as a vaccination technology. Compared with IM immunization, intradermal administration via the MN-mediated DNA vaccine effectively induces a comparable level of neutralizing antibody against SARS-CoV-2 variants. Surprisingly, we found that MN-mediated intradermal immunization elicited superior systemic and mucosal T cell immunity with enhanced magnitude, polyfunctionality, and persistence. Importantly, the DNA@COS nanoparticle vaccine loaded in an MN patch can be stored at room temperature for at least 1 month without a significant decrease of its immunogenicity. Mechanically, our strategy enhanced dendritic cell maturation and antiviral immunity by activating the cGAS-STING-mediated IFN signaling pathway. In conclusion, this work provides valuable insights for the rapid development of an easy-to-administer and thermostable technology for mucosal vaccines.


Subject(s)
Chitosan , Nanoparticles , Vaccines , Immunity, Mucosal , Oligosaccharides , Antibodies, Viral
3.
Microbiol Spectr ; : e0052523, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695104

ABSTRACT

Latent viral reservoir is recognized as the major obstacle to achieving a functional cure for HIV infection. We previously reported that arsenic trioxide (As2O3) combined with antiretroviral therapy (ART) can reactivate the viral reservoir and delay viral rebound after ART interruption in chronically simian immunodeficiency virus (SIV)-infected macaques. In this study, we further investigated the effect of As2O3 independent of ART in chronically SIV-infected macaques. We found that As2O3-only treatment significantly increased the CD4/CD8 ratio, improved SIV-specific T cell responses, and reactivated viral latency in chronically SIVmac239-infected macaques. RNA-sequencing analysis revealed that As2O3 treatment downregulated the expression levels of genes related to HIV entry and infection, while the expression levels of genes related to transcription initiation, cell apoptosis, and host restriction factors were significantly upregulated. Importantly, we found that As2O3 treatment specifically induced apoptosis of SIV-infected CD4+ T cells. These findings revealed that As2O3 might not only impact viral latency, but also induce the apoptosis of HIV-infected cells and thus block the secondary infection of bystanders. Moreover, we investigated the therapeutic potential of this regimen in acutely SIVmac239-infected macaques and found that As2O3 + ART treatment effectively restored the CD4+ T cell count, delayed disease progression, and improved survival in acutely SIV-infected macaques. In sum, this work provides new insights to develop As2O3 as a component of the "shock-and-kill" strategy toward HIV functional cure. IMPORTANCE Although antiretroviral therapy (ART) can effectively suppress the viral load of AIDS patients, it cannot functionally cure HIV infection due to the existence of HIV reservoir. Strategies toward HIV functional cure are still highly anticipated to ultimately end the pandemic of AIDS. Herein, we investigated the direct role of As2O3 independent of ART in chronically SIV-infected macaques and explored the underlying mechanisms of the potential of As2O3 in the treatment of HIV/SIV infection. Meanwhile, we investigated the therapeutic effects of ART+As2O3 in acutely SIVmac239-infected macaques. This study showed that As2O3 has the potential to be launched into the "shock-and-kill" strategy to suppress HIV/SIV reservoir due to its latency-reversing and apoptosis-inducing properties.

4.
Clin. transl. oncol. (Print) ; 25(8): 2393-2407, aug. 2023. graf
Article in English | IBECS | ID: ibc-222417

ABSTRACT

Background Recent studies have reported that cuproptosis, a novel cell death pathway, strongly correlates with mitochondrial metabolism. In addition, the studies reported that cuproptosis plays a role in the development of several cancers and is regulated by protein lipoylation. During cuproptosis, copper binds to the lipoylated proteins and mediates cancer progression. However, the role of cuproptosis in acute myeloid leukemia (AML) patients is yet to be explored. Methods This study curated seven cuproptosis-related-genes (CRGs): FDX1, DLAT, PDHB, PDHA1, DLD, LIAS, and LIPT1 to determine cuproptosis modification patterns and the CRGs signature in AML. The CIBERSORT and ssGSEA algorithms were utilized to evaluate the infiltration levels of different immune cell subtypes. A cuproptosis score system based on differentially expressed genes (DEGs) was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The developed cuproptosis score system was validated using two immunotherapy datasets, IMvigor210 and GSE78220. Results Three distinct cuproptosis regulation patterns were identified using the Beat AML cohort. The results demonstrated that the three cuproptosis regulation patterns were correlated with various biological pathways and clinical outcomes. Tumor microenvironment (TME) characterization revealed that the identified cuproptosis regulation patterns were consistent with three immune profiles: immune-desert, immune-inflamed, and immune-excluded. The AML patients were grouped into low- and high-score groups based on the cuproptosis score system abstracted from 486 cuproptosis-related DEGs. Patients with lower cuproptosis scores were characterized by longer survival time and attenuated immune infiltration. It was found that lower cuproptosis scores were strongly correlated with lower somatic mutation frequency (AU)


Subject(s)
Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Antineoplastic Agents, Immunological , Tumor Microenvironment , Prognosis , Algorithms , Apoptosis
5.
J Med Virol ; 95(7): e28973, 2023 07.
Article in English | MEDLINE | ID: mdl-37477806

ABSTRACT

The HIV-1 pandemic has persisted for four decades, and poses a major challenge to global public health. Shenzhen, a city with large number of migrant populations in China, is suffering HIV-1 epidemic. It is necessary to continuously conduct the molecular surveillance among newly diagnosed HIV-1 patients in these migrant population. In this study, plasma samples of newly diagnosed and ART-naive HIV-1 infections were collected from Shenzhen city in China. The partial genes of HIV-1 gag and pol were amplified and sequenced for the analysis of genotype, drug resistance, and molecular transmission network. Ninety-one sequences of pol gene were obtained from newly diagnosed HIV-1 infections in Shenzhen, and seven HIV-1 subtypes were revealed in this investigation. Among them, the circulating recombinant form (CRF) 07_BC was the mostly frequent subtype (53.8%, 49/91), followed by CRF01_AE (20.9%, 19/91), CRF55_01B (9.9%, 9/91), unique recombinant forms (URFs) (8.8%, 8/91), B (3.3%, 3/91), CRF59_01B (2.2%, 2/91), and CRF08_BC (1.1%, 1/91). The overall prevalence of pretreatment drug resistance (PDR) was 23.1% (21/91), and 52.38% (11/21) of the PDR was specific for the nonnucleotide reverse transcriptase inhibitors (NNRTIs). Furthermore, a total of 3091 pol gene sequences were used to generate 19 molecular transmission clusters, and then one growing cluster, a new cluster, and a cluster with growth reactivation were identified. The result revealed that more sexual partner, CRF_07BC subtype, and seven amino acid deletions in gag p6 region might be the influencing factors associated with the high risk of transmission behavior. Compared with CRF01_AE subtype, CRF07_BC subtype strains were more likely to form clusters in molecular transmission network. This suggests that long-term surveillance of the HIV-1 molecular transmission should be a critical measure to achieve a precise intervention for controlling the spread of HIV-1 in China.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Phylogeny , HIV Infections/genetics , Genes, pol , HIV Seropositivity/genetics , Genotype , China/epidemiology , Drug Resistance, Viral/genetics
6.
Viruses ; 15(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37376617

ABSTRACT

The frequent SARS-CoV-2 variants have caused a continual challenge, weakening the effectiveness of current vaccines, and thus it is of great importance to induce robust and conserved T cellular immunity for developing the next-generation vaccine against SARS-CoV-2 variants. In this study, we proposed a conception of enhancing the SARS-CoV-2 specific T cell functionality by fusing autophagosome-associated LC3b protein to the nucleocapsid (N) (N-LC3b). When compared to N protein alone, the N-LC3b protein was more effectively targeted to the autophagosome/lysosome/MHC II compartment signal pathway and thus elicited stronger CD4+ and CD8+ T cell immune responses in mice. Importantly, the frequency of N-specific polyfunctional CD4+ and CD8+ T cells, which can simultaneously secrete multiple cytokines (IFN-γ+/IL-2+/TNF-α+), in the N-LC3b group was significantly higher than that in the N alone group. Moreover, there was a significantly improved T cell proliferation, especially for CD8+ T cells in the N-LC3b group. In addition, the N-LC3b also induced a robust humoral immune response, characterized by the Th1-biased IgG2a subclass antibodies against the SARS-CoV-2 N protein. Overall, these findings demonstrated that our strategy could effectively induce a potential SARS-CoV-2 specific T cellular immunity with enhanced magnitude, polyfunctionality, and proliferation, and thus provided insights to develop a promising strategy for the design of a novel universal vaccine against SARS-CoV-2 variants and other emerging infectious diseases.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , CD4-Positive T-Lymphocytes , COVID-19 Vaccines/metabolism , COVID-19/metabolism , Autophagy , Signal Transduction , Antibodies, Viral
7.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982532

ABSTRACT

Deeply understanding virus-host interactions is a prerequisite for developing effective strategies to control frequently emerging infectious diseases, which have become a serious challenge for global public health. The type I interferon (IFN)-mediated JAK/STAT pathway is well known for playing an essential role in host antiviral immunity, but the exact regulatory mechanisms of various IFN-stimulated genes (ISGs) are not yet fully understood. We herein reported that SerpinA5, as a novel ISG, played a previously unrecognized role in antiviral activity. Mechanistically, SerpinA5 can upregulate the phosphorylation of STAT1 and promote its nuclear translocation, thus effectively activating the transcription of IFN-related signaling pathways to impair viral infections. Our data provide insights into SerpinA5-mediated innate immune signaling during virus-host interactions.


Subject(s)
Antiviral Agents , Janus Kinases , Antiviral Agents/pharmacology , Immunity, Innate , Janus Kinases/metabolism , Phosphorylation , Signal Transduction , STAT Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism , Interferon Type I/metabolism , Active Transport, Cell Nucleus
9.
Hum Vaccin Immunother ; 19(1): 2171233, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36785935

ABSTRACT

The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.


Subject(s)
COVID-19 , Mycobacterium smegmatis , Mice , Humans , Animals , Mycobacterium smegmatis/genetics , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
10.
Clin Transl Oncol ; 25(8): 2393-2407, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36826709

ABSTRACT

BACKGROUND: Recent studies have reported that cuproptosis, a novel cell death pathway, strongly correlates with mitochondrial metabolism. In addition, the studies reported that cuproptosis plays a role in the development of several cancers and is regulated by protein lipoylation. During cuproptosis, copper binds to the lipoylated proteins and mediates cancer progression. However, the role of cuproptosis in acute myeloid leukemia (AML) patients is yet to be explored. METHODS: This study curated seven cuproptosis-related-genes (CRGs): FDX1, DLAT, PDHB, PDHA1, DLD, LIAS, and LIPT1 to determine cuproptosis modification patterns and the CRGs signature in AML. The CIBERSORT and ssGSEA algorithms were utilized to evaluate the infiltration levels of different immune cell subtypes. A cuproptosis score system based on differentially expressed genes (DEGs) was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The developed cuproptosis score system was validated using two immunotherapy datasets, IMvigor210 and GSE78220. RESULTS: Three distinct cuproptosis regulation patterns were identified using the Beat AML cohort. The results demonstrated that the three cuproptosis regulation patterns were correlated with various biological pathways and clinical outcomes. Tumor microenvironment (TME) characterization revealed that the identified cuproptosis regulation patterns were consistent with three immune profiles: immune-desert, immune-inflamed, and immune-excluded. The AML patients were grouped into low- and high-score groups based on the cuproptosis score system abstracted from 486 cuproptosis-related DEGs. Patients with lower cuproptosis scores were characterized by longer survival time and attenuated immune infiltration. It was found that lower cuproptosis scores were strongly correlated with lower somatic mutation frequency. Moreover, patients with lower cuproptosis scores presented more favorable immune responses and dual clinical benefits among external validation cohorts. CONCLUSIONS: Cuproptosis phenotypes are significantly correlated with immune microenvironment complexity and variety. Cuprotopsis regulates the response of cancer cells to the immune system. Quantitatively assessing cuproptosis phenotypes in AML improves the understanding and knowledge regarding immune microenvironment characteristics and promotes the development of therapeutic interventions.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/genetics , Algorithms , Cell Death , Immunotherapy , Apoptosis , Tumor Microenvironment
12.
Front Immunol ; 13: 850719, 2022.
Article in English | MEDLINE | ID: mdl-35450078

ABSTRACT

HIV-1 CRF07_BC-p6Δ7, a strain with a seven amino acid deletion in the p6 region of the Gag protein, is becoming the dominant strain of HIV transmission among men who have sex with men (MSM) in China. Previous studies demonstrated that HIV-1 patients infected by CRF07_BC-p6Δ7 strain had lower viral load and slower disease progression than those patients infected with CRF07_BC wild-type strain. However, the underlying mechanism for this observation is not fully clarified yet. In this study, we constructed the recombinant DNA plasmid and adenovirus type 2 (Ad2) vector-based constructs to express the HIV-1 CRF07_BC Gag antigen with or without p6Δ7 mutation and then investigated their immunogenicity in mice. Our results showed that HIV-1 CRF07_BC Gag antigen with p6Δ7 mutation induced a comparable level of Gag-specific antibodies but stronger CD4+ and CD8+ T-cell immune responses than that of CRF07_BC Gag (07_BC-wt). Furthermore, we identified a series of T-cell epitopes, which induced strong T-cell immune response and cross-immunity with CRF01_AE Gag. These findings implied that the p6Gag protein with a seven amino acid deletion might enhance the Gag immunogenicity in particular cellular immunity, which provides valuable information to clarify the pathogenic mechanism of HIV-1 CRF07_BC-p6Δ7 and to develop precise vaccine strategies against HIV-1 infection.


Subject(s)
Epitopes, T-Lymphocyte , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , Amino Acids , Animals , Antigens, Viral , HIV Infections/virology , HIV-1/genetics , Homosexuality, Male , Humans , Male , Mice , Sexual and Gender Minorities , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
13.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-35336927

ABSTRACT

Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Adjuvants, Immunologic , Antigens , Communicable Diseases, Emerging/prevention & control , Humans , Immunity, Mucosal , Mucous Membrane , Vaccination
14.
J Virol ; 96(3): e0178521, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34818070

ABSTRACT

The persistence of cells latently infected with HIV-1, named the latent reservoir, is the major barrier to HIV-1 eradication, and the formation and maintenance of the latent reservoir might be exacerbated by activation of the immunoinhibitory pathway and dysfunction of CD8+ T cells during HIV-1 infection. Our previous findings demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred effective control of highly pathogenic SIVmac239 infection in rhesus macaques. However, to our surprise, herein we found that a therapeutic vaccination in combination with PD-1 blockade resulted in activation of the viral reservoir, faster viral rebound after treatment interruption, accelerated AIDS progression, and, ultimately, death in chronically SIV-infected macaques after antiretroviral therapy (ART) interruption. Our study further demonstrated that the SIV provirus was preferentially enriched in PD-1+CD4+ T cells due to their susceptibility to viral entry, potent proliferative ability, and inability to perform viral transcription. In addition, the viral latency was effectively reactivated upon PD-1 blockade. Together, these results suggest that PD-1 blockade may be a double-edged sword for HIV-1 immunotherapy and provide important insight toward the rational design of immunotherapy strategies for an HIV-1 cure. IMPORTANCE As it is one of the most challenging public health problems, there are no clinically effective cure strategies against HIV-1 infection. We demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred better control of highly pathogenic SIVmac239 infection in rhesus macaques. In the present study, to our surprise, PD-1 blockade during therapeutic vaccination accelerated the reactivation of latent reservoir and AIDS progression in chronically SIV-infected macaques after ART interruption. Our study further demonstrated that the latent SIV provirus was preferentially enriched in PD-1+CD4+ T cells because of its susceptibility to viral entry, inhibition of SIV transcription, and potent ability of proliferation, and the viral latency was effectively reactivated by PD-1 blockade. Therefore, PD-1 blockade might be a double-edged sword for AIDS therapy. These findings provoke interest in further exploring novel treatments against HIV-1 infection and other emerging infectious diseases.


Subject(s)
Programmed Cell Death 1 Receptor/antagonists & inhibitors , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Biopsy , Computational Biology , Disease Progression , Immunohistochemistry , Immunomodulation/drug effects , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome , Viral Load , Virus Activation/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
15.
Hum Vaccin Immunother ; 17(12): 5069-5075, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34714727

ABSTRACT

BACKGROUND: COVID-19 pandemic continues to pose a huge threat to public health. Mass vaccination is needed to achieve herd immunity against SARS-CoV-2. Currently, several vaccines are being inoculated on a large-scale. The willingness of COVID-19 vaccination had been well investigated in the pre-vaccination era, but no reported data in the post-vaccination era yet. METHODS: We conducted a large-scale survey among industrial workers during the vaccination campaign in China. Chi-square test and rank sum test were used to identify differences for various intentions regarding COVID-19 vaccination. Univariate analysis and multivariate regression models were utilized to analyze the relationship among demographic factors, related influencing factors and acceptance of COVID-19 vaccination. RESULTS: A total of 23,940 industrial workers were included, 66.0% were willing to take COVID-19 vaccine, 16.6% were unwilling, and 17.4% were unsure. Participants were more likely to get vaccinated if they were male, aged 45-65, being good educated, married, or being recommended by doctors or nurses. Participants with strong risk perception of COVID-19 infection, strong confidence in COVID-19 vaccine, high attention to COVID-19 vaccine, good health status, bad health habit, and a history of vaccination within three months were also more likely to be vaccinated. CONCLUSIONS: This study calls for more attention and health-related education among industrial workers to improve their acceptance of COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , COVID-19/prevention & control , China/epidemiology , Cross-Sectional Studies , Humans , Male , Mass Vaccination , Middle Aged , Pandemics , SARS-CoV-2 , Vaccination
16.
Biomaterials ; 276: 121062, 2021 09.
Article in English | MEDLINE | ID: mdl-34418816

ABSTRACT

Adenovirus (Ad) has been extensively developed as a gene delivery vector, but the potential side effect caused by systematic immunization remains one major obstacle for its clinical application. Needle-free mucosal immunization with Ad-based vaccine shows advantages but still faces poor mucosal responses. We herein report that the chemical engineering of single live viral-based vaccine effectively modulated the location and pattern of the subsequently elicited immunity. Through precisely assembly of functional materials onto single live Ad particle, the modified virus entered host cell in a phagocytosis-dependent manner, which is completely distinct from the receptor-mediated entry of native Ad. RNA-Seq data further demonstrated that the modified Ad-induced innate immunity was sharply reshaped via phagocytosis-related pathway, therefore promoting the activation and mature of antigen presentation cells (APC). Moreover, the functional shell enabled the modified Ad-based vector with enhanced muco-adhesion to nasal tissues in mice, and then prolonged resident time onto mucosal surface, leading to the robust mucosal IgA production and T cell immunity at local and even remote mucosal-associated lymphoid tissues. This study demonstrated that vaccine-induced immunity can be well modulated by chemistry engineering, and this method provides the rational design for needle-free mucosa-targeting vaccine against a variety of emerging infectious diseases.


Subject(s)
Viral Vaccines , Adenoviridae/genetics , Animals , Genetic Vectors , Immunity, Mucosal , Mice , Phagocytosis
17.
Viruses ; 13(2)2021 02 21.
Article in English | MEDLINE | ID: mdl-33670023

ABSTRACT

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Humans , Pandemics , T-Lymphocytes, Cytotoxic/immunology
18.
Hum Vaccin Immunother ; 17(7): 2279-2288, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33522405

ABSTRACT

Background: A safe and effective vaccine against COVID-19 has become a public health priority. However, little is known about the public willingness to accept a future COVID-19 vaccine in China. This study aimed to understand the willingness and determinants for the acceptance of a COVID-19 vaccine among Chinese adults.Methods: A cross-sectional survey using an online questionnaire was conducted in an adult population in China. Chi-square tests were used to identify differences for various intentions regarding COVID-19 vaccination. The t test was used to identify differences among vaccine hesitancy scores. Multivariable logistic regression was used to analyze the predicated factors associated with the willingness to receive a COVID-19 vaccine.Results: Of the 3195 eligible participants, 83.8% were willing to receive a COVID-19 vaccine, and 76.6% believed the vaccine would be beneficial to their health; however, 74.9% expressed concerns or a neutral attitude regarding its potential adverse effects. Of the participants, 76.5% preferred domestically manufactured vaccines and were more willing to be vaccinated than those who preferred imported vaccines. Multivariable logistic regression indicated that lack of confidence, complacency in regard to health, risk of the vaccine, and attention frequency were the main factors affecting the intention to receive a COVID-19 vaccine.Conclusion: Our study indicated that the respondents in China had a high willingness to accept a COVID-19 vaccine, but some participants also worried about its adverse effects. Information regarding the efficacy and safety of an upcoming COVID-19 vaccine should be disseminated to ensure its acceptance and coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , China , Cross-Sectional Studies , Humans , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
19.
Vaccines (Basel) ; 8(3)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911701

ABSTRACT

After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.

20.
Front Microbiol ; 9: 2995, 2018.
Article in English | MEDLINE | ID: mdl-30568645

ABSTRACT

Campylobacter is one of the most common pathogens leading to the bacterial diarrheal illness. In order to set up one effective culture independent assay for the screen of the Campylobacter infection in the diarrheal patients, the quadruple real-time PCR method comparing to the culture based on the enriched filtration method which was recognized as the most effective isolation method was assessed for 190 stool samples from the diarrheal patients collected during the Foodborne Diseases Active Surveillance Network in Beijing. This multiple real-time PCR was designed to identify the Campylobacter genus, C. jejuni, C. coli, and C. lari simultaneously. With the enrichment culture method, 23 (12.1%, 23/190) Campylobacter isolates were obtained (20 C. jejuni and 3 C. coli), however, 31 samples (16.3%, 31/190) were detected positively with the real-time PCR (21 C. jejuni, 8 C. coli, and 2 Campylobacter genus only). With the comparison, the real-time-PCR method is more sensitive than the enrichment filtration method (16.3 vs. 12.1%, p = 0.021). Among the culture-positive samples, 95.7% (22/23) were detected positively by PCR which indicate the specificity of this method was higher. These two methods were consistent well (Kappa = 0.785, p < 0.05). Comparing to the culture methods, the result of the multiple real-time PCR method is sensitive, reliable and rapid. The present study indicated this multiple real-time PCR can be used both for the surveillance network and the preceding screen for bacteria isolation. This is first comparative study between the culture and multiple real-time PCR method for Campylobacter identification in stool specimens from the diarrheal patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...