Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.704
Filter
1.
OMICS ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149810

ABSTRACT

The study of longevity and its determinants has been revitalized with the rise of microbiome scholarship. The gut microbiota have been established to play essential protective, metabolic, and physiological roles in human health and disease. The gut dysbiosis has been identified as an important factor contributing to the development of multiple diseases. Accordingly, it is reasonable to hypothesize that the gut microbiota of long-living individuals have healthy antiaging-associated gut microbes, which, by extension, might provide specific molecular targets for antiaging treatments and interventions. In the present study, we compared the gut microbiota of Chinese individuals in two different age groups, long-living adults (aged over 90 years) and elderly adults (aged 65-74 years) who were free of major diseases. We found significantly lower relative abundances of bacteria in the genera Sutterella and Megamonas in the long-living individuals. Furthermore, we established that while biological processes such as autophagy (GO:0006914) and telomere maintenance through semiconservative replication (GO:0032201) were enhanced in the long-living group, response to lipopolysaccharide (GO:0032496), nicotinamide adenine dinucleotide oxidation (GO:0006116), and S-adenosyl methionine metabolism (GO:0046500) were weakened. Moreover, the two groups were found to differ with respect to amino acid metabolism. We suggest that these compositional and functional differences in the gut microbiota may potentially be associated with mechanisms that contribute to determining longevity or aging.

2.
Zhongguo Gu Shang ; 37(7): 664-9, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39104066

ABSTRACT

OBJECTIVE: To analyze the differences of clinical features of acute gout flare and postoperative infection under arthroscopy of knee gouty arthritis patients to offer guiding opinions of clinical diagnosis and treatment. METHODS: Between January 2017 and December 2022, 235 patients with gouty knee osteoarthritis were admitted, and underwent arthroscopic debridement combined with synovectomy. Among them, 35 cases had fever with a temperature higher than 38 °C postoperatively while acute inflammatory appears under redness, swelling, heat and pain of the operated joints. There were 29 males and 6 females, with an average age of (41.48±13.90) years old. Among them 23 patients were diagnosed with acute gout attack, and recovered well after being given colchicine and prednisolone;12 patients were diagnosed with postoperative joint infection, and were cured after being given anti-infective treatments and cleaning and rinsing of the joint cavity. The two groups of patients were compared and analyzed in terms of preoperative general data, surgical conditions, hematology, joint fluid, limb function and other clinical characteristics. RESULTS: There were no significant difference in the preoperative general data between two groups. The onset of fever in the postoperative acute gout flare group occurred mostly within 48 hours, significantly earlier than that in the postoperative infection group(P=0.037). The visual analogue scale score was significantly higher in the acute gout flare group (5.32±1.38) score than in the postoperative infection group (2.45±0.68) score (P=0.000), while 14 patients with acute gout flare were accompanied by severe pain in other joints. Hematologically, indicators such as white blood cell counts and ratios were significantly higher in both groups. In terms of inflammatory indicators, IL-6, erythrocyte sedimentation rate, procalcitonin and other inflammatory indicators were significantly elevated in both groups, but there was no statistical difference between two groups. The C-reactive protein level in the postoperative infection group (220.97±116.30) mg·L-1 was higher than that in the postoperative acute gout attack group(120.67±82.45) mg·L-1(P=0.006). Blood uric acid (316.55±112.84) µmol·L-1 was higher in the acute postoperative gout flare group than in the postoperative infection group (159.14±126.92) µmol·L-1(P=0.001). In the joint fluid examination of the postoperative infection group, the glucose metabolism indicator was significantly lower than that of the acute gout flare group, and five of them had positive bacterial cultures. CONCLUSION: The symptoms of acute gout flare could be mistaken as postoperative infection due to their similarity, therefore requires careful differentiation. Differential diagnosis should be based on a combination of clinical signs, hematology and joint fluid findings, and targeted treatment should be given to avoid serious complications.


Subject(s)
Arthritis, Gouty , Arthroscopy , Humans , Female , Male , Arthritis, Gouty/surgery , Arthroscopy/adverse effects , Adult , Middle Aged , Diagnostic Errors , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Knee Joint/surgery , Acute Disease , Aged
3.
Medicine (Baltimore) ; 103(31): e39057, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093763

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, poses a huge threat to human health. Pancreatic cancer (PC) is a malignant tumor with high mortality. Research suggests that infection with SARS-CoV-2 may increase disease severity and risk of death in patients with pancreatic cancer, while pancreatic cancer may also increase the likelihood of contracting SARS-CoV-2, but the link is unclear. METHODS: This study investigated the transcriptional profiles of COVID-19 and PC patients, along with their respective healthy controls, using bioinformatics and systems biology approaches to uncover the molecular mechanisms linking the 2 diseases. Specifically, gene expression data for COVID-19 and PC patients were obtained from the Gene Expression Omnibus datasets, and common differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses were performed on the common DEGs to elucidate the regulatory relationships between the diseases. Additionally, hub genes were identified by constructing a protein-protein interaction network from the shared DEGs. Using these hub genes, we conducted regulatory network analyses of microRNA/transcription factors-genes relationships, and predicted potential drugs for treating COVID-19 and PC. RESULTS: A total of 1722 and 2979 DEGs were identified from the transcriptome data of PC (GSE119794) and COVID-19 (GSE196822), respectively. Among these, 236 common DEGs were found between COVID-19 and PC based on protein-protein interaction analysis. Functional enrichment analysis indicated that these shared DEGs were involved in pathways related to viral genome replication and tumorigenesis. Additionally, 10 hub genes, including extra spindle pole bodies like 1, holliday junction recognition protein, marker of proliferation Ki-67, kinesin family member 4A, cyclin-dependent kinase 1, topoisomerase II alpha, cyclin B2, ubiquitin-conjugating enzyme E2 C, aurora kinase B, and targeting protein for Xklp2, were identified. Regulatory network analysis revealed 42 transcription factors and 23 microRNAs as transcriptional regulatory signals. Importantly, lucanthone, etoposide, troglitazone, resveratrol, calcitriol, ciclopirox, dasatinib, enterolactone, methotrexate, and irinotecan emerged as potential therapeutic agents against both COVID-19 and PC. CONCLUSION: This study unveils potential shared pathogenic mechanisms between PC and COVID-19, offering novel insights for future research and therapeutic strategies for the treatment of PC and SARS-CoV-2 infection.


Subject(s)
COVID-19 , Computational Biology , Pancreatic Neoplasms , Protein Interaction Maps , SARS-CoV-2 , Systems Biology , Humans , COVID-19/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/virology , Computational Biology/methods , Systems Biology/methods , SARS-CoV-2/genetics , Protein Interaction Maps/genetics , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling/methods
4.
J Appl Gerontol ; : 7334648241273441, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177517

ABSTRACT

Death anxiety arousal is a common tactic in fraud targeting older adults; however, little is known about its impact on vulnerability to fraud and the moderating role of mental simulation. Two experiments were conducted using the mortality salience task. Experiment 1 employed a mortality salience manipulation to examine the causality of death anxiety arousal affecting older adults' vulnerability to fraud using a behavioral experiment. Experiment 2 used the imaginary priming paradigm to manipulate different types of mental simulation to address whether mental simulation could moderate the relationship between death anxiety and vulnerability to fraud. The results showed that death anxiety significantly increased the vulnerability to fraud. Process and downward outcome simulation buffered this effect, while upward outcome simulation exacerbated it. Clinicians may focus on relieving death anxiety, decreasing upward outcome simulation, and enhancing process or downward outcome simulation as promising pathways to protect older adults against fraud.

5.
Angew Chem Int Ed Engl ; : e202408426, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177728

ABSTRACT

Isodesmic reactions, in which chemical bonds are redistributed between substrates and products, provide a general and powerful strategy for both biological and chemical synthesis. However, most isodesmic reactions involve either metathesis or functional-group transfer. Here, we serendipitously discovered a novel isodesmic reaction of indoles and anilines that proceeds intramolecularly under weakly acidic conditions. In this process, the five-membered ring of the indole motif is broken and a new indole motif is constructed on the aniline side, accompanied by the formation of a new aniline motif. Mechanistic studies revealed the pivotal role of σ→π* hyperconjugation on the nitrogen atom of the indole motif in driving this unusual isodesmic reaction. Furthermore, we successfully synthesized a diverse series of polycyclic indole derivatives; among quinolines, potential antitumor agents were identified using cellular and in vivo experiments, thereby demonstrating the synthetic utility of the developed methodology.

6.
BMC Genom Data ; 25(1): 77, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192187

ABSTRACT

OBJECTIVES: Roscoea is a Sino-Himalayan alpine genus in pantropical family Zingiberaeae. As traditional Tibetan medicinal plants, many species of this genus are threatened by digging, logging, land clearance, grazing and climate change. Roscoea debilis is an endemic species in the Hengduan Mountains with a narrow distribution range. In this study, the assembled and annotated genome of Roscoea was presented in order to furnish significant resources for comparative and functional genomic investigations. The first complete reference genome of Roscoea is expected to shed light on research on conservation and evolutionary biology. DATA DESCRIPTION: A chromosome-level genome of 1601.04 Mb was obtained for R. debilis by combining Illumina short reads (107.28 Gb) and PacBio Hi-Fi reads (64.08 Gb), achieving high-quality sequencing coverage of roughly 67 × and 40 ×. The assembly was additionally assisted by 271.65 Gb Hi-C data (169 ×), which resulted in a contig N50 of 136.17 Mb and a scaffold N50 of 90.48 Mb. Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment results revealed that most of the core embryophyta genes (98.7%) in the BUSCO dataset (embryophyta_odb10) were successfully identified. Additionally, 96.44% of the genomic sequences were accurately mapped onto twelve pseudochromosomes.


Subject(s)
Genome, Plant , Genome, Plant/genetics , Zingiberaceae/genetics , Molecular Sequence Annotation , High-Throughput Nucleotide Sequencing , Genomics/methods , Phylogeny
7.
Food Sci Biotechnol ; 33(12): 2835-2844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184993

ABSTRACT

Aging is a known independent risk factor for several cardiovascular diseases. Here, we evaluated potential effects and possible mechanisms through which alginate oligosaccharides (AOS) affect hydrogen peroxide (H2O2)-induced senescence in H9C2 cardiomyocytes. A series of AOS molecules, including oligoM, oligoG, M-5, and G-5, were investigated. AOS significantly decreased SA-ß-gal and DAPI-stained positive cells, downregulated p53 and p21 (aging-related markers) expression, and eventually protected H9C2 cells from H2O2-induced senescence. AOS decreased reactive oxygen species and malondialdehyde production, recovered mitochondrial function, and alleviated the oxidative stress state by regulating PGC-1α and NADPH oxidase subunit expression. Furthermore, AOS treatment restored the expression of antioxidant enzymes in senescent H9C2 cells. Thus, our results show in vitro evidence that AOS alleviate senescence in H9C2 cells by regulating the redox state; thus, AOS may be an effective therapeutic agent that could protect against cardiomyocyte senescence.

8.
Anesthesiology ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186677

ABSTRACT

BACKGROUND: Acute liver injury (ALI) is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate ALI and investigate its possible mechanisms. METHODS: ALI was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type (WT), α7nAChR knockout (α7nAChR -/-) and Sting mutation (Stinggt/gt) mice in the presence or absence of a pharmacological selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis and infiltration of immune cells during ALI were assessed. RESULTS: The expression of α7nAChR in liver tissue was increased in LPS/D-Gal induced ALI mice. Compared to the age-matched WT mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacological activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86 hiCD163low), Ly6Chi monocytes (CD45+CD11b+MHCⅡ lowLy6C hi), but increased the resident Kupffer cells (CD45+CD11bintF4/80 hiTIM4 hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS: Our study revealed that activating α7nAChR could protect against LPS/D-Gal induced ALI by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway.

9.
Bioorg Chem ; 152: 107742, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39186916

ABSTRACT

Human serum albumin (HSA) serves as a crucial indicator for therapeutic monitoring and biomedical diagnosis. In this study, a near infrared (NIR) fluorescent probe, termed BTPA, characterized a donor-π-acceptor (D-π-A) structure based on bridged triphenylamine (TPA) was developed. BTPA exhibited outstanding sensitivity and selectivity towards HSA among various analysts, with a remarkable 50-fold fluorescence enhancement with a significant Stokes shift (∼190 nm) and a wide linear detection range of 0-20 µM of HSA. Especially, BTPA displayed selectivity for discrimination of HSA from BSA. Job's Plot analysis suggested a 1:1 stoichiometry for the formation of the BTPA-HSA complex. Displacement assays and molecular docking demonstrated that BTPA binds to subdomain IB of HSA which could effectively avoid interference from most drugs. Besides, BTPA have good biocompatibility and could detect of exogenous HSA with a relatively low fluorescence background. For practical applications, BTPA was tested for detecting HSA levels in human urine without any pretreatment, showing detection capability in the range of 0-10 µM with a fast response (<30 s), a limit of detection (LOD) of 0.12 µM and good recoveries (81.7-92.9 %), highlighting the high performance of bridged triphenylamine-based probe BTPA.

10.
Gene ; : 148892, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187138

ABSTRACT

Sepsis-related brain injury (SRBI) refers to brain dysfunction and structural damage caused by sepsis, which is characterized by inflammation, oxidative stress, and destruction of the blood-brain barrier. Pioglitazone is a PPAR-γ agonist in which PPAR-γ acts as an inflammatory modulator, determining the relationship between PPAR-γ and SRBI and inflammatory state is critical for the disease. This study aimed to construct a drug-target-disease network for SRBI and Pioglitazone based on network pharmacology, and to investigate the therapeutic effect and potential mechanism of Pioglitazone in SRBI induced by lipopolysaccharide (LPS) in rats through transcriptomics. To establish a rat Model of SRBI by intraperitoneal injection of LPS (10 mg/kg): SD rats were divided into Control, Model (LPS), Pioglitazone, (LPS + Pioglitazone) and GW9662 group (LPS+GW9662). The effects and potential mechanisms of Pioglitazone in the treatment of SRBI were studied using biochemical indexes, pathological changes and transcriptome-sequencing (RNA-seq). RNA-seq results showed 620 DEGs between the Model and the Pioglitazone groups. Enrichment analysis involved multiple inflammatory response processes and chemokine receptor binding functions. TLR4 and CXCL10 in the Toll signaling pathway may play an important role in SRBI as important targets. Pioglitazone may ameliorate SRBI through the PPAR-γ/TLR4/CXCL10 pathway.

11.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 206-211, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097873

ABSTRACT

The objective of this study was to investigate the impact of ethyl pyruvate (EP), an HMGB1 inhibitor, on ESCC cells both in vitro and in vivo. The viability of ESCC cells was assessed using the MTT method to evaluate the correlation between EP and cell viability. A scratch test was used to investigate the relationship between EP and cell migration and invasion. The effects of EP on tumor growth and survival in cancerous nude mice were examined using a tumor formation model. Immunohistochemical staining was performed to evaluate the expression levels of HMGB1, TLR4, and MyD88 in tumor tissues. EP, an anti-HMGB1 inhibitor, inhibited ESCC cell proliferation and metastasis in vitro and in vivo. Furthermore, compared with the control treatment, EP improved the activity, diet, and drinking behaviour of nude mice; inhibited tumour growth; and led to lower protein expression levels of HMGB1, TLR4, and MyD88. EP has the potential to regulate the HMGB1/TLR4-MyD88 signaling pathway, thereby inhibiting the proliferation and metastasis of ESCC, suppressing tumor growth, improving quality of life, and serving as an effective drug for ESCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGB1 Protein , Mice, Nude , Myeloid Differentiation Factor 88 , Pyruvates , Toll-Like Receptor 4 , Animals , Pyruvates/pharmacology , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred BALB C , Cell Survival/drug effects , Male
12.
Int J Biol Macromol ; 278(Pt 3): 134919, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179070

ABSTRACT

Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.

13.
ACS Nano ; 18(34): 23615-23624, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39149797

ABSTRACT

The performance of quasi-two-dimensional (Q-2D) perovskite solar cells (PSCs) strongly depends on the interface characteristics between the hole transport material (HTM) and the perovskite layer. In this work, we designed and synthesized a series of HTMs with triphenylamine-carbazole as the core structure and modified end groups with chlorine and bromine atoms. These HTMs show deeper highest occupied molecular orbital energy levels than commercial HTMs. This reduced energy band mismatch between the HTM and perovskite layer facilitates efficient charge extraction at the interface. Moreover, these HTMs containing halogen atoms on the end groups could form halogen bonding with the Pb2+ ions at the buried interface of the perovskite layer, effectively passivating defects to suppress nonradiative recombination. Additionally, halogen bonding also contributes to the formation of vertically oriented perovskite crystals with a high quality. By incorporation of chlorohexane-substituted HTMs, the resultant Q-2D PSCs exhibited the highest power conversion efficiency of 21.07%. Furthermore, the devices show improved stability, retaining 97.2% of their initial efficiency after 1100 h of continuous illumination.

14.
BMC Genomics ; 25(1): 799, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182038

ABSTRACT

As a Brassica crop, Brassica napus typically has single flowers that contain four petals. The double-flower phenotype of rapeseed has been a desirable trait in China because of its potential commercial value in ornamental tourism. However, few double-flowered germplasms have been documented in B. napus, and knowledge of the underlying genes is limited. Here, B. napus D376 was characterized as a double-flowered strain that presented an average of 10.92 ± 1.40 petals and other normal floral organs. F1, F2 and BC1 populations were constructed by crossing D376 with a single-flowered line reciprocally. Genetic analysis revealed that the double-flower trait was a recessive trait controlled by multiple genes. To identify the key genes controlling the double-flower trait, bulk segregant analysis sequencing (BSA-seq) and RNA-seq analyses were conducted on F2 individual bulks with opposite extreme phenotypes. Through BSA-seq, one candidate interval was mapped at the region of chromosome C05: 14.56-16.17 Mb. GO and KEGG enrichment analyses revealed that the DEGs were significantly enriched in carbohydrate metabolic processes, notably starch and sucrose metabolism. Interestingly, five and thirty-six DEGs associated with floral development were significantly up- and down-regulated, respectively, in the double-flowered plants. A combined analysis of BSA-seq and RNA-seq data revealed that five genes were candidates associated with the double flower trait, and BnaC05.ERS2 was the most promising gene. These findings provide novel insights into the breeding of double-flowered varieties and lay a theoretical foundation for unveiling the molecular mechanisms of floral development in B. napus.


Subject(s)
Brassica napus , Flowers , Phenotype , RNA-Seq , Brassica napus/genetics , Brassica napus/growth & development , Flowers/genetics , Flowers/growth & development , Genes, Plant , Gene Expression Regulation, Plant , Chromosome Mapping , Gene Expression Profiling
15.
Sci Bull (Beijing) ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39183108

ABSTRACT

Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91 % yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.

16.
Front Plant Sci ; 15: 1400301, 2024.
Article in English | MEDLINE | ID: mdl-39135652

ABSTRACT

Introduction: Members of the plant-specific B3 transcription factor superfamily play crucial roles in various plant growth and developmental processes. Despite numerous valuable studies on B3 genes in other species, little is known about the B3 superfamily in pearl millet. Methods and results: Here, through comparative genomic analysis, we identified 70 B3 proteins in pearl millet and categorized them into four subfamilies based on phylogenetic affiliations: ARF, RAV, LAV, and REM. We also mapped the chromosomal locations of these proteins and analyzed their gene structures, conserved motifs, and gene duplication events, providing new insights into their potential functional interactions. Using transcriptomic sequencing and real-time quantitative PCR, we determined that most PgB3 genes exhibit upregulated expression under drought and high-temperature stresses, indicating their involvement in stress response regulation. To delve deeper into the abiotic stress roles of the B3 family, we focused on a specific gene within the RAV subfamily, PgRAV-04, cloning it and overexpressing it in tobacco. PgRAV-04 overexpression led to increased drought sensitivity in the transgenic plants due to decreased proline levels and peroxidase activity. Discussion: This study not only adds to the existing body of knowledge on the B3 family's characteristics but also advances our functional understanding of the PgB3 genes in pearl millet, reinforcing the significance of these factors in stress adaptation mechanisms.

17.
World J Clin Cases ; 12(20): 4419-4426, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015931

ABSTRACT

BACKGROUND: On June 30, 2021, China received certification from the World Health Organization for malaria elimination. However, this certification does not signify the absence of malaria within China. Due to the increasing frequency of international exchanges and collaborations, the threat of imported malaria persists in China. Consequently, the prevention and control of imported malaria have become a primary focus for our country to maintain its malaria elimination status. CASE SUMMARY: Herein, we present a case report of a 53-year-old Chinese man who worked in Africa for nearly two years. He was diagnosed with malaria in the Democratic Republic of the Congo between November 19 and November 23, 2022. After receiving effective treatment with oral antimalarial drugs, his condition improved, allowing him to return to China. He was later admitted to our hospital on January 12, 2023, during the coronavirus disease 2019 pandemic in Huangshi, China. Through a thorough evaluation of the patient's symptoms, clinical signs, imaging and laboratory test results, and epidemiological data, he was rapidly diagnosed with severe cerebral malaria. The patient underwent successful treatment through a series of intensive care unit interventions. CONCLUSION: The successful treatment of this imported case of severe cerebral malaria provides a valuable reference for managing patients with similar malaria infections and has significant clinical implications.

18.
Zhen Ci Yan Jiu ; 49(7): 678-685, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020485

ABSTRACT

OBJECTIVES: To investigate the impact of combined treatment of colorectal cancer (CRC) with electroacupuncture (EA) and capeOX (combined administration of fluorouracil, oxaliplatin and capecitabine) on the tumor volume, weight, spleen coefficient, apoptosis and ferroptosis of tumor tissue, and liver and kidney functions in nude mice with CRC, so as to explore its mechanisms underlying inhibiting CRC and alleviating toxic reactions of capeOX. METHODS: Female Balb/c nude mice were randomly assigned to 3 groups:model, capeOX, and EA+capeOX, with 8 nude mice in each group. The CRC model was established by subcutaneous injection of colon cancer cells at the right inguinal region. Nude mice of the capeOX group received intraperitoneal injection of oxaliplatin for 1 day and gavage of capecitabine from day 2 to day 7. EA (1 mA, 2 Hz/100 Hz) was applied to bilateral "Zusanli" (ST36) for 20 min, once daily for 7 days. During the interven-tion, the tumor volume and weight were measured every day, and at the end of intervention, the weight of the tumor tissue and spleen were measured, with tumor volume difference and spleen coefficient calculated. The proportion of apoptotic cells was measured by flow cytometry, and the contents of serum malondialdehyde (MDA), alanine aninotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) were detected using ELISA. The expression level of glutathione peroxidase 4 (GPX4, a key regulator for ferroptosis) protein of the tumor tissue was determined using Western blot. RESULTS: Compared to the model group, both the capeOX group and EA+capeOX group showed a decrease in the tumor volume (on day 3 and 4 in the capeOX group, and from day 2 to 7 in the EA+capeOX group) and body weight (P<0.05, on day 3 to 7 in the EA+capeOX group and on day 2 to 7 in the capeOX group), being evidently lower in the tumor volume on day 7 in the EA+capeOX than in the capeOX group (P<0.05), and evidently higher in the body weight on day 6 and 7 in the EA+capeOX group than in the capeOX group (P<0.05). In comparison with the model group, the tumor volume difference, tumor weight and spleen coefficient in both capeOX and EA+capeOX groups were significantly decreased (P<0.05), and MDA content in EA+capeOX group was significantly decreased (P<0.05), while the contents of ALT, BUN and Cr in the capeOX group, the proportion of apoptotic cells in both capeOX and EA+capeOX groups, and the GPX4 expression level in the EA+capeOX group were all significantly increased (P<0.05). The tumor volume difference, tumor weight, and contents of MDA, ALT, AST, BUN and Cr in the EA+capeOX group were markedly lower than in the capeOX group (P<0.05), while the spleen coefficient, proportion of apoptotic cells and GPX4 expression level in the EA+capeOX group were markedly higher than those in the capeOX group (P<0.05). CONCLUSIONS: EA of ST36 can enhance the effect of capeOX in inhibiting colorectal cancer growth in nude mice with CRC, which may be related with its functions in promoting tumor cell apoptosis, inhibiting ferroptosis, and modulating immune tolerance. In addition, EA can lower the side effects of capeOX in hematopoietic and immune, liver, and kidney functions.


Subject(s)
Acupuncture Points , Apoptosis , Colorectal Neoplasms , Electroacupuncture , Ferroptosis , Mice, Inbred BALB C , Mice, Nude , Animals , Mice , Ferroptosis/drug effects , Humans , Apoptosis/drug effects , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Female , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
20.
Zool Res ; 45(4): 924-936, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021081

ABSTRACT

Amyloid beta (Aß) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aß1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aß aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aß aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aß amyloid fibril formation and reduced Aß-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Mice , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Magnetic Fields , Disease Models, Animal , Plaque, Amyloid , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...