Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 630
Filter
1.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-38947555

ABSTRACT

INTRODUCTION: The essence of ferroptosis is the accumulation of membrane lipid peroxides caused by increased iron, which disrupts the redox balance within cells and triggers cell death. Abnormal metabolism of iron significantly increases the risk of lung cancer and induces treatment resistance. However, the roles and mechanisms of smocking in ferroptosis in patients with lung cancer are still unclear. METHODS: Our study was a secondary bioinformatics analysis followed by an experimental cell culture analysis. In this study, we identified the different ferroptosis-related genes and established the signature in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) patients with different smocking status, based on The Cancer Genome Atlas (TCGA) database. Fanyl diphosphate fanyl transferase 1 (FDFT1) in LUSC patients and solute carrier one family member 5 (SLC1A5) in LUAD patients were confirmed to be related to ferroptosis. Next, we checked the roles of two main components of smoke, nicotine, and benzo(a)pyrene (BaP), in ferroptosis of non-small-cell lung cancer (NSCLC) cells. RESULTS: We confirmed that nicotine inhibited reactive oxygen species (ROS) levels and induced glutathione peroxidase (GPX4) expression, while the opposite roles of BaP were observed in NSCLC cells. Mechanically, nicotine protected NSCLC cells from ferroptosis through upregulation of epidermal growth factor receptor (EGFR) and SLC1A5 expression. BaP-induced ferroptosis in NSCLC cells depends on FDFT1 expression. CONCLUSIONS: In this study, the ferroptosis-associated gene signature was identified in LUAD and LUSC patients with different smoking status. We confirmed nicotine-protected LUAD and LUSC cells from ferroptosis by upregulating EGFR and SLC1A5 expression. BaP-induced ferroptosis in these cells depends on FDFT1 expression.

2.
Cancer Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989827

ABSTRACT

Reprogramming of cellular energy metabolism, including deregulated lipid metabolism, is a hallmark of head and neck squamous cell carcinoma (HNSCC). However, the underlying molecular mechanisms remain unclear. Long-chain acyl-CoA synthetase 4 (ACSL4), which catalyzes fatty acids to form fatty acyl-CoAs, is critical for synthesizing phospholipids or triglycerides. Despite the differing roles of ACSL4 in cancers, our data showed that ACSL4 was highly expressed in HNSCC tissues, positively correlating with poor survival rates in patients. Knockdown of ACSL4 in HNSCC cells led to reduced cell proliferation and invasiveness. RNA sequencing analyses identified interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), encoded by two interferon-stimulated genes, as potential effectors of ACSL4. Silencing IFI44 or IFI44L expression in HNSCC cells decreased cell proliferation and invasiveness. Manipulating ACSL4 expression or activity modulated the expression levels of JAK1, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1 (STAT1), interferon α (IFNα), IFNß, and interferon regulatory factor 1 (IRF1), which regulate IFI44 and IFI44L expression. Knockdown of IRF1 reduced the expression of JAK1, TYK2, IFNα, IFNß, IFI44, or IFI44L and diminished cell proliferation and invasiveness. Our results suggest that ACSL4 upregulates interferon signaling, enhancing IFI44 and IFI44L expression and promoting HNSCC cell proliferation and invasiveness. Thus, ACSL4 could serve as a novel therapeutic target for HNSCC.

3.
Surg Endosc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977497

ABSTRACT

OBJECTIVE: To investigate the significance of endoscopic grading (Hill's classification) of gastroesophageal flap valve (GEFV) in the examination of patients with gastroesophageal reflux disease (GERD). METHODS: One hundred and sixty-two patients undergoing gastroscopy in the Department of Gastroenterology, Xingyi People's Hospital between Apr. 2022 and Sept. 2022 were selected by convenient sampling, and data such as GEFV grade, and findings of esophageal high-resolution manometry (HRM) and esophageal 24-h pH/impedance reflux monitoring, and Los Angeles (LA) classification of reflux esophagitis (RE) were collected and compared. RESULTS: Statistically significant differences in age (F = 9.711, P < 0.001) and hiatal hernia (χ = 35.729, P < 0.001) were observed in patients with different GEFV grades. The resting LES pressures were 12.12 ± 2.79, 10.73 ± 2.68, 9.70 ± 2.29, and 8.20 ± 2.77 mmHg (F = 4.571, P < 0.001) and LES lengths were 3.30 ± 0.70, 3.16 ± 0.68, 2.35 ± 0.83, and 2.45 ± 0.62 (F = 3.789, P = 0.011), respectively, in patients with GEFV grades I-IV. DeMeester score (Z = 5.452, P < 0.001), AET4 (Z = 5.614, P < 0.001), acid reflux score (upright) (Z = 7.452, P < 0.001), weak acid reflux score (upright) (Z = 3.121, P = 0.038), liquid reflux score (upright) (Z = 3.321, P = 0.031), acid reflux score (supine) (Z = 6.462, P < 0.001), mixed reflux score (supine) (Z = 3.324, P = 0.031), gas reflux score (supine) (Z = 3.521, P = 0.024) were different in patients with different GEFV grades, with statistically significant differences. Pearson correlation analysis revealed a positive correlation between RE grade and LA classification of GERD (r = 0.662, P < 0.001), and the severity of RE increased gradually with the increase of the Hill grades of GEFV. CONCLUSION: The Hill grade of GEFV is related to age, hiatal hernia, LES pressure, and the consequent development and severity of acid reflux and RE. Evaluation of esophageal motility and reflux based on the Hill grade of GEFV is of significance for the diagnosis and treatment of GERD.

4.
BMC Med Educ ; 24(1): 774, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030541

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) pandemic has accentuated the need for effective clinical skills training in infectious diseases. This study aimed to explore the influencing factors of infectious disease clinical skills training based on scenario simulation teaching for medical staff in China. METHODS: This hospital-based, cross-sectional study was conducted at the Third People's Hospital of Shenzhen between March and December 2022. Scenario simulation teaching was applied, and factors such as gender, educational level, professional background, and previous experience were examined to determine their impact on qualification outcomes. RESULTS: The study included participants primarily between the ages of 20-40 years, with a higher proportion of women holding university degrees. Nurses and physicians were more likely to qualify, indicating the significance of professional backgrounds. Women showed a higher likelihood of qualifying than men and higher educational attainment correlated with better qualification rates. Prior experience with protective clothing in isolation wards was a significant determinant of successful qualification. Multivariate analysis underscored the influence of sex, education, and previous experience on training effectiveness. CONCLUSION: Scenario simulation is an effective strategy for training clinical skills in treating infectious diseases. This study highlights the importance of considering sex, education, professional background, and prior experience when designing training programs to enhance the efficacy and relevance of infectious disease training.


Subject(s)
COVID-19 , Clinical Competence , Simulation Training , Humans , COVID-19/epidemiology , Cross-Sectional Studies , China , Female , Male , Adult , SARS-CoV-2 , Young Adult , Medical Staff, Hospital/education , Pandemics
5.
J Sci Food Agric ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843481

ABSTRACT

BACKGROUND: Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS: Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION: The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.

6.
J Psychiatr Res ; 176: 248-253, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38897055

ABSTRACT

In clinical practice, accurately identifying self-injurious behavior among adolescents with major depressive disorder (MDD) is crucial for individualized treatment. This study aimed to examine the differences in prefrontal cortex activation using the functional near-infrared spectroscopy (fNIRS) during the verbal fluency task (VFT) assessment of adolescents with MDD and self-harm (SH) compared with those without SH. A total of 60 eligible patients were included for final analysis, with the SH group containing 36 participants, and the Non-SH group containing 24 participants. We found that right middle frontal gyrus (rMFG) was more activated in the SH group than that in the Non-SH group during the VFT assessments (z = -3.591, p = 0.004, FDR correction). The z-scores of beta values of rMFG exhibited a good discriminatory power with the area under the curve (AUC) in distinguishing the two groups (AUC = 0.775, p < 0.001). These findings reveal that the fNIRS-VFT paradigm may be a useful tool for discovering neurobiological differences among adolescents with MDD.

7.
Eur J Pharmacol ; 978: 176799, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38945289

ABSTRACT

Dihydromyricetin (DHM) is a flavonoid from vine tea with broad pharmacological benefits, which improve inflammation by blocking the NF-κB pathway. A growing body of research indicates that chronic kidney inflammation is vital to the pathogenesis of diabetic renal fibrosis. Sphingosine kinase-1 (SphK1) is a key regulator of diabetic renal inflammation, which triggers the NF-κB pathway. Hence, we evaluated whether DHM regulates diabetic renal inflammatory fibrosis by acting on SphK1. Here, we demonstrated that DHM effectively suppressed the synthesis of fibrotic and inflammatory adhesion factors like ICAM-1, and VCAM-1 in streptozotocin-treated high-fat diet-induced diabetic mice and HG-induced glomerular mesangial cells (GMCs). Moreover, DHM significantly suppressed NF-κB pathway activation and reduced SphK1 activity and protein expression under diabetic conditions. Mechanistically, the results of molecular docking, molecular dynamics simulation, and cellular thermal shift assay revealed that DHM stably bound to the binding pocket of SphK1, thereby reducing sphingosine-1-phosphate content and SphK1 enzymatic activity, which ultimately inhibited NF-κB DNA binding, transcriptional activity, and nuclear translocation. In conclusion, our data suggested that DHM inhibited SphK1 phosphorylation to prevent NF-κB activation thus ameliorating diabetic renal fibrosis. This supported the clinical use and further drug development of DHM as a potential candidate for treating diabetic renal fibrosis.

8.
Chin Med ; 19(1): 82, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862959

ABSTRACT

BACKGROUND: Heart failure (HF) is characterized by a disorder of cardiomyocyte energy metabolism. Xinbao Pill (XBW), a traditional Chinese medicine formulation integrating "Liushen Pill" and "Shenfu Decoction," has been approved by China Food and Drug Administration for the treatment of HF for many years. The present study reveals a novel mechanism of XBW in HF through modulation of cardiac energy metabolism. METHODS: In vivo, XBW (60, 90, 120 mg/kg/d) and fenofibrate (100 mg/kg/d) were treated for six weeks in Sprague-Dawley rats that were stimulated by isoproterenol to induce HF. Cardiac function parameters were measured by echocardiography, and cardiac pathological changes were assessed using H&E, Masson, and WGA staining. In vitro, primary cultured neonatal rat cardiomyocytes (NRCMs) were induced by isoproterenol to investigate the effects of XBW on myocardial cell damage, mitochondrial function and fatty acid energy metabolism. The involvement of the SGLT1/AMPK/PPARα signalling axis was investigated. RESULTS: In both in vitro and in vivo models of ISO-induced HF, XBW significantly ameliorated cardiac hypertrophy cardiac fibrosis, and improved cardiac function. Significantly, XBW improved cardiac fatty acid metabolism and mitigated mitochondrial damage. Mechanistically, XBW effectively suppressed the expression of SGLT1 protein while upregulating the phosphorylation level of AMPK, ultimately facilitating the nuclear translocation of PPARα and enhancing its transcriptional activity. Knockdown of SGLT1 further enhanced cardiac energy metabolism by XBW, while overexpression of SGLT1 reversed the cardio-protective effect of XBW, highlighting that SGLT1 is probably a critical target of XBW in the regulation of cardiac fatty acid metabolism. CONCLUSIONS: XBW improves cardiac fatty acid energy metabolism to alleviate HF via SGLT1/AMPK/PPARα signalling axis.

9.
Sci Rep ; 14(1): 12864, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834664

ABSTRACT

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Subject(s)
Alginates , Chitosan , Hydrogels , Keratins , Tannins , Chitosan/chemistry , Chitosan/analogs & derivatives , Tannins/chemistry , Alginates/chemistry , Hydrogels/chemistry , Humans , Keratins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Wound Healing/drug effects , Cell Survival/drug effects , Spectroscopy, Fourier Transform Infrared , Elastic Modulus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
10.
Phytomedicine ; 132: 155780, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38885580

ABSTRACT

BACKGROUND: The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE: In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS: In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS: The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION: This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.

11.
Biochem Pharmacol ; 226: 116373, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885772

ABSTRACT

Diabetic nephropathy (DN) is a complication of diabetes and is mainly characterized by renal fibrosis, which could be attributed to chronic kidney inflammation. Stimulator of interferon genes (STING), a linker between immunity and metabolism, could ameliorate various metabolic and inflammatory diseases. However, the regulatory role of STING in DN remains largely unexplored. In this study, knockdown of STING decreased extracellular matrix (ECM), pro-inflammatory, and fibrotic factors in high glucose (HG)-induced glomerular mesangial cells (GMCs), whereas overexpression of STING triggered the inflammatory fibrosis process, suggesting that STING was a potential target for DN. Polydatin (PD) is a glucoside of resveratrol and has been reported to ameliorate DN by inhibiting inflammatory responses. Nevertheless, whether PD improved DN via STING remains unclear. Here, transcriptomic profiling implied that the STING/NF-κB pathway might be an important target for PD. We further found that PD decreased the protein expression of STING, and subsequently suppressed the activation of downstream targets including TBK1 phosphorylation and NF-κB nuclear translocation, and eventually inhibited the production of ECM, pro-inflammatory and fibrotic factors in HG-induced GMCs. Notably, results of molecular docking, molecular dynamic simulations, surface plasmon resonance, cellular thermal shift assay and Co-immunoprecipitation assay indicated that PD directly bound to STING and restored the declined proteasome-mediated degradation of STING induced by HG. In diabetic mice, PD also inhibited the STING pathway and improved the pathological changes of renal inflammatory fibrosis. Our study elucidated the regulatory role of STING in DN, and the novel mechanism of PD treating DN via inhibiting STING expression.

12.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764726

ABSTRACT

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

13.
World J Clin Cases ; 12(14): 2412-2419, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38765752

ABSTRACT

BACKGROUND: Rectal mucinous adenocarcinoma (MAC) is a rare pathological type of rectal cancer with unique pathological features and a poor prognosis. It is difficult to diagnose and treat early because of the lack of specific manifestations in some aspects of the disease. The common metastatic organs of rectal cancer are the liver and lung; however, rectal carcinoma with metastasis to subcutaneous soft tissue is a rare finding. CASE SUMMARY: In this report, the clinical data, diagnosis and treatment process, and postoperative pathological features of a patient with left waist subcutaneous soft tissue masses were retrospectively analyzed. The patient underwent surgical treatment after admission and recovered well after surgery. The final pathological diagnosis was rectal MAC with left waist subcutaneous soft tissue metastasis. CONCLUSION: Subcutaneous soft tissue metastasis of rectal MAC is rare, and it can suggest that the tumor is disseminated, and it can appear even earlier than the primary malignant tumor, which is occult and leads to a missed diagnosis and misdiagnosis clinically. When a subcutaneous soft tissue mass of unknown origin appears in a patient with rectal cancer, a malignant tumor should be considered.

14.
J Hazard Mater ; 472: 134468, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703680

ABSTRACT

The performance of biochar (BC) in reducing the transport of antibiotics under field conditions has not been sufficiently explored. In repacked sloping boxes of a calcareous soil, the effects of different BC treatments on the discharge of three relatively weakly sorbing antibiotics (sulfadiazine, sulfamethazine, and florfenicol) via runoff and drainage were monitored for three natural rain events. Surface application of 1 % BC (1 %BC-SA) led to the most effective reduction in runoff discharge of the two sulfonamide antibiotics, which can be partly ascribed to the enhanced water infiltration. The construction of 5 % BC amended permeable reactive wall (5 %BC-PRW) at the lower end of soil box was more effective than the 1 %BC-SA treatment in reducing the leaching of the most weakly sorbing antibiotic (florfenicol), which can be mainly ascribed to the much higher plant available and drainable water contents in the 5 %BC-PRW soil than in the unamended soil. The results of this study highlight the importance of BC's ability to regulate flow pattern by modifying soil hydraulic properties, which can make a significant contribution to the achieved reduction in the transport of antibiotics offsite or to groundwater.


Subject(s)
Anti-Bacterial Agents , Charcoal , Soil Pollutants , Soil , Anti-Bacterial Agents/chemistry , Charcoal/chemistry , Adsorption , Soil/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Water Movements , Groundwater/chemistry , Thiamphenicol/analogs & derivatives , Thiamphenicol/chemistry
15.
Mol Genet Genomic Med ; 12(5): e2469, 2024 May.
Article in English | MEDLINE | ID: mdl-38778723

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most prevalent kind type of paroxysmal Dyskinesia, characterized by recurrent and transient episodes of involuntary movements. Most PKD cases were attributed to the proline-rich transmembrane protein 2 (PRRT2) gene, in which the c.649 region is a hotspot for known mutations. Even though some patients with PKD have been genetically diagnosed using whole-exome sequencing (WES) and Sanger sequencing, there are still cases of missed diagnoses due to the limitations of sequencing technology and analytic methods on throughput. METHODS: Patients meeting the diagnosis criteria of PKD with negative results of PRRT2-Sanger sequencing and WES were included in this study. Mutation screening and targeted high-throughput sequencing were performed to analyze and verify the sequencing results of the potential mutations. RESULTS: Six patients with PKD with high mutation ratios of c.649dupC were screened using our targeted high-throughput sequencing from 26 PKD patients with negative results of PRRT2-Sanger sequencing and WES (frequency = 23.1%), which compensated for the comparatively shallow sequencing depth and statistical flaws in this region. Compared with the local normal population and other patients with PKD, the mutation ratios of c.649dupC of these six patients with PKD were much higher and also had truncated protein structures and differentially altered mRNA expression. CONCLUSION: Based on the above studies, we emphasize the routine targeted high-throughput sequencing of the c.649 site in the PRRT2 gene in so-called genetic-testing-negative patients with PKD, and manually calculate the deletion and duplication mutations depth and ratios to lower the rate of clinical misdiagnosis.


Subject(s)
Dystonia , Genetic Testing , Membrane Proteins , Nerve Tissue Proteins , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Female , Male , Dystonia/genetics , Dystonia/diagnosis , Child , Adolescent , Genetic Testing/methods , Genetic Testing/standards , Adult , High-Throughput Nucleotide Sequencing/methods , Mutation , Child, Preschool , Exome Sequencing/methods
16.
Acta Pharmacol Sin ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702500

ABSTRACT

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.

17.
Heliyon ; 10(7): e28090, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571596

ABSTRACT

Background: Lung adenocarcinoma (LUAD) has a complex tumor heterogeneity. Our research attempts to clearness LUAD subtypes and build a reliable prognostic signature according to the activity changes of the hallmark and immunologic gene sets. Methods: According to The Cancer Genome Atlas (TCGA) - LUAD dataset, changes in marker and immune gene activity were analyzed, followed by identification of prognosis-related differential gene sets (DGSs) and their related LUAD subtypes. Survival analysis, correlation with clinical characteristics, and immune microenvironment assessment for subtypes were performed. Moreover, the differentially expressed genes (DEGs) between different subtypes were identified, followed by the construction of a prognostic risk score (RS) model and nomogram model. The tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) of different risk groups were compared. Results: Two LUAD subtypes were determined according to the activity changes of the hallmark and immunologic gene sets. Cluster 2 had worse prognosis, more advanced tumor and clinical stages than cluster 1. Moreover, a prognostic RS signature was established using two LUAD subtype-related DEGs, which could stratify patients at different risk levels. Nomogram model incorporated RS and clinical stage exerted good prognostic performance in LUAD patients. A shorter survival time and higher TMB were observed in the high-risk patients. Conclusions: Our findings revealed that our constructed prognostic signature could exactly predict the survival status of LUAD cases, which was helpful in predicting the prognosis and guiding personalized therapeutic strategies for LUAD.

18.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561971

ABSTRACT

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , RNA/metabolism , Carcinoma, Ovarian Epithelial/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Line, Tumor , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cell Proliferation , Apoptosis , MicroRNAs/metabolism , Cell Movement
19.
Plant Biotechnol J ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593377

ABSTRACT

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

20.
BMC Urol ; 24(1): 100, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689213

ABSTRACT

BACKGROUND: Bone metastasis (BM) carries a poor prognosis for patients with upper-tract urothelial carcinoma (UTUC). This study aims to identify survival predictors and develop a prognostic nomogram for overall survival (OS) in UTUC patients with BM. METHODS: The Surveillance, Epidemiology, and End Results database was used to select patients with UTUC between 2010 and 2019. The chi-square test was used to assess the baseline differences between the groups. Kaplan-Meier analysis was employed to assess OS. Univariate and multivariate analyses were conducted to identify prognostic factors for nomogram establishment. An independent cohort was used for external validation of the nomogram. The discrimination and calibration of the nomogram were evaluated using concordance index (C-index), area under receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). All statistical analyses were performed using SPSS 23.0 and R software 4.2.2. RESULTS: The mean OS for UTUC patients with BM was 10 months (95% CI: 8.17 to 11.84), with 6-month OS, 1-year OS, and 3-year OS rates of 41%, 21%, and 3%, respectively. Multi-organ metastases (HR = 2.21, 95% CI: 1.66 to 2.95, P < 0.001), surgery (HR = 0.72, 95% CI: 0.56 to 0.91, P = 0.007), and chemotherapy (HR = 0.37, 95% CI: 0.3 to 0.46, P < 0.001) were identified as independent prognostic factors. The C-index was 0.725 for the training cohort and 0.854 for the validation cohort, and all AUC values were > 0.679. The calibration curve and DCA curve showed the accuracy and practicality of the nomogram. CONCLUSIONS: The OS of UTUC patients with BM was poor. Multi-organ metastases was a risk factor for OS, while surgery and chemotherapy were protective factors. Our nomogram was developed and validated to assist clinicians in evaluating the OS of UTUC patients with BM.


Subject(s)
Bone Neoplasms , Carcinoma, Transitional Cell , Nomograms , Ureteral Neoplasms , Humans , Bone Neoplasms/secondary , Bone Neoplasms/mortality , Male , Female , Aged , Middle Aged , Carcinoma, Transitional Cell/secondary , Carcinoma, Transitional Cell/mortality , Ureteral Neoplasms/mortality , Ureteral Neoplasms/pathology , Ureteral Neoplasms/secondary , Survival Rate , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Prognosis , Retrospective Studies , SEER Program , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...