Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Int J Oral Maxillofac Implants ; 0(0): 1-28, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728145

ABSTRACT

PURPOSE: Finite element analysis and an in vitro experiment were employed to investigate the loading effects of angled abutments, comparing various customized angled abutments derived from the average angle of incisors in patients with a commercial 15°∆ angled abutment, on both the implant and surrounding bone. METHODS: Four customized angled abutment models (21.9°∆, 24.15°∆, 20.22°∆, 33°∆) were developed using cone-beam computed tomography (CBCT) images of incisor inclination from various age groups of patients. 3D maxillary bone models were created from CBCT images of four individual patients. Finite element analysis and in-vitro strain gauge experiments were conducted, applying 100N or 50N of axial or oblique force, to assess the differences in stress/strain between the customized and the commercial 15°∆ angled abutments in both the implants and surrounding bone. RESULTS: Under axial loading, the stress values in the dental implant and surrounding bone were elevated due to the relatively higher angles of the customized angled abutments (21.9°∆, 24.15°∆, 20.22°∆, 33°∆) when compared to the commercial 15°∆ angled abutment; however, under oblique loading the commercial 15°∆angled abutment exhibited higher stress values in both the implant and surrounding bone. For in vitro experiment, there is no statically difference in bone strain between the customized (21.9°∆) and the commercial 15°∆ angled abutments in axial loading. Nevertheless, in oblique loading using a commercial 15°∆ angled abutment induced the higher bone strains. CONCLUSION: Customized angled abutments offer lower stress/strain under oblique loads but higher stress/strain under axial loads compared to commercial ones. Therefore, in the design and application of angled abutments, careful consideration of the occlusal load direction is paramount for achieving biomechanical success of dental implant.

2.
Water Res ; 256: 121582, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608621

ABSTRACT

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Subject(s)
Colloids , Groundwater , Metals, Rare Earth , Minerals , Mining , Water Pollutants, Chemical , Groundwater/chemistry , Colloids/chemistry , China , Minerals/chemistry , Adsorption
3.
Radiat Oncol J ; 42(1): 88-94, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38549388

ABSTRACT

PURPOSE: Re-irradiation for bulky recurrent sarcoma carries significant risks. Pulsed low-dose rate radiotherapy (PLDR) is an attractive option for re-irradiation due to inherent radiobiological advantages. MATERIALS AND METHODS: We present two patients who underwent reirradiation using PLDR technique, followed by a literature review. RESULTS: The first case is that of a 76-year-old male who developed an in-field recurrence of a bulky pelvic bone high-grade chondrosarcoma after he was treated with definitive radiotherapy using helical TomoTherapy with a total dose of 66 Gy. The patient was re-irradiated using PLDR with a shrinking field technique; 50 Gy in 2 Gy fractions followed by a boost of 20 Gy in 2 Gy fractions. The patient remains disease-free without significant toxicity 60 months post-irradiation. The second case is that of an 82-year-old female who was treated with a definitive irradiation of 66 Gy in 33 fractions for a right shoulder grade II chondrosarcoma. She developed an in-field recurrence 28 months later and presented with bulky disease causing brachial plexopathy and lymphedema. The patient was re-irradiated with a palliative intent to a total dose of 50 Gy in 2 Gy fractions over 5 weeks using PLDR. Brachial plexopathy resolved shortly after re-irradiation, but local progression near the surface was evident 8 months later. She passed away from unrelated causes 11 months later. CONCLUSION: We present two cases highlighting our early experience with PLDR, which was effective in the reirradiation of recurrent bony sarcoma. Our study highlights PLDR as an option for reirradiation in recurrent unresectable tumors.

4.
Metallomics ; 15(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37591604

ABSTRACT

Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.


Subject(s)
Cerium , Synchrotrons , X-Rays , Lanthanum , Microscopy, Fluorescence
5.
Environ Int ; 175: 107939, 2023 05.
Article in English | MEDLINE | ID: mdl-37137179

ABSTRACT

Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O2 and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake. Here, we investigated the effects on Cr(VI) generation and the subsequent Cr uptake and accumulation with the involvement of two rice cultivars with distinct ROL capacities by increasing soil Mn abundance. Results showed that Mn(II) addition to the soil led to more Cr(III) being released into the pore water, and the dissolved Cr(III) was oxidized to Cr(VI) by ROL and biogenic Mn(III/IV) oxides. The concentration of Cr(VI) in soil and pore water increased linearly with the addition of Mn(II) doses. Mn(II) addition promoted the root-to-shoot translocation and grain accumulation of Cr derived mainly from newly generated Cr(VI) in the soil. These results emphasize that rice ROL and MOM promote the oxidative dissolution of Cr(III) at a high level of soil Mn, resulting in more Cr accumulation in rice grains and increasing dietary Cr exposure risks.


Subject(s)
Chromium , Oryza , Soil Pollutants , Chromium/chemistry , Oxidation-Reduction , Oxides/chemistry , Soil/chemistry , Soil Pollutants/analysis , Solubility , Water
6.
Front Mol Neurosci ; 16: 1183032, 2023.
Article in English | MEDLINE | ID: mdl-37201155

ABSTRACT

Background: 2021 World Health Organization (WHO) Central Nervous System (CNS) tumor classification increasingly emphasizes the important role of molecular markers in glioma diagnoses. Preoperatively non-invasive "integrated diagnosis" will bring great benefits to the treatment and prognosis of these patients with special tumor locations that cannot receive craniotomy or needle biopsy. Magnetic resonance imaging (MRI) radiomics and liquid biopsy (LB) have great potential for non-invasive diagnosis of molecular markers and grading since they are both easy to perform. This study aims to build a novel multi-task deep learning (DL) radiomic model to achieve preoperative non-invasive "integrated diagnosis" of glioma based on the 2021 WHO-CNS classification and explore whether the DL model with LB parameters can improve the performance of glioma diagnosis. Methods: This is a double-center, ambispective, diagnostical observational study. One public database named the 2019 Brain Tumor Segmentation challenge dataset (BraTS) and two original datasets, including the Second Affiliated Hospital of Nanchang University, and Renmin Hospital of Wuhan University, will be used to develop the multi-task DL radiomic model. As one of the LB techniques, circulating tumor cell (CTC) parameters will be additionally applied in the DL radiomic model for assisting the "integrated diagnosis" of glioma. The segmentation model will be evaluated with the Dice index, and the performance of the DL model for WHO grading and all molecular subtype will be evaluated with the indicators of accuracy, precision, and recall. Discussion: Simply relying on radiomics features to find the correlation with the molecular subtypes of gliomas can no longer meet the need for "precisely integrated prediction." CTC features are a promising biomarker that may provide new directions in the exploration of "precision integrated prediction" based on the radiomics, and this is the first original study that combination of radiomics and LB technology for glioma diagnosis. We firmly believe that this innovative work will surely lay a good foundation for the "precisely integrated prediction" of glioma and point out further directions for future research. Clinical trail registration: This study was registered on ClinicalTrails.gov on 09/10/2022 with Identifier NCT05536024.

7.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37071813

ABSTRACT

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Subject(s)
Ferns , Membrane Transport Proteins , Metals, Rare Earth , Cell Membrane , Ferns/metabolism , Zinc/metabolism
8.
J Hazard Mater ; 452: 131254, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36965356

ABSTRACT

Dicranopteris linearis is the best-known hyperaccumulator species of rare earth elements (REEs) and silicon (Si), capable of dealing with toxic level of REEs. Hence, this study aimed to clarify how D. linearis leaves cope with excessive REE stress, and whether Si plays a role in REE detoxification. The results show that lanthanum (La - as a representative of the REEs) stress led to decreased biomass and an increase of metabolism related to leaf cell wall synthesis and modification. However, the La stress-induced responses, especially the increase of pectin-related gene expression level, pectin polysaccharides concentration, and methylesterase activity, could be mitigated by Si supply. Approximately 70% of the Si in D. linearis leaves interacted with the cell walls to form organosilicon Si-O-C linkages. The Si-modified cell walls contained more hydroxyl groups, leading to a more efficient REE retention compared to the Si-free ones. Moreover, this [Si-cell wall] matrix increased the pectin-La accumulation capacity by 64%, with no effect on hemicellulose-La and cellulose-La accumulation capacity. These results suggest that [Si-pectin] matrix fixation is key in REE detoxification in D. linearis, laying the foundation for the development of phytotechnological applications (e.g., REE phytomining) using this species in REE-contaminated sites.


Subject(s)
Metals, Rare Earth , Tracheophyta , Silicon , Pectins , Lanthanum
9.
J Hazard Mater ; 443(Pt A): 130241, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36308929

ABSTRACT

Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Microbiology , Metals, Heavy/toxicity , Metals, Heavy/analysis , China
10.
J Hazard Mater ; 443(Pt B): 130253, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36327843

ABSTRACT

The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.


Subject(s)
Metals, Rare Earth , Tracheophyta , Metals, Rare Earth/chemistry , Water
11.
Article in English | WPRIM (Western Pacific) | ID: wpr-967425

ABSTRACT

Background@#The emergence of the severe acute respiratory syndrome coronavirus 2 omicron variant has been triggering the new wave of coronavirus disease 2019 (COVID-19) globally. However, the risk factors and outcomes for radiological abnormalities in the early convalescent stage (1 month after diagnosis) of omicron infected patients are still unknown. @*Methods@#Patients were retrospectively enrolled if they were admitted to the hospital due to COVID-19. The chest computed tomography (CT) images and clinical data obtained at baseline (at the time of the first CT image that showed abnormalities after diagnosis) and 1 month after diagnosis were longitudinally analyzed. Uni-/multi-variable logistic regression tests were performed to explore independent risk factors for radiological abnormalities at baseline and residual pulmonary abnormalities after 1 month. @*Results@#We assessed 316 COVID-19 patients, including 47% with radiological abnormalities at baseline and 23% with residual pulmonary abnormalities at 1-month follow-up. In a multivariate regression analysis, age ≥ 50 years, body mass index ≥ 23.87, days after vaccination ≥ 81 days, lymphocyte count ≤ 1.21 × 10 -9 /L, interleukin-6 (IL-6) ≥ 10.05 pg/mL and IgG ≤ 14.140 S/CO were independent risk factors for CT abnormalities at baseline. The age ≥ 47 years, presence of interlobular septal thickening and IL-6 ≥ 5.85 pg/mL were the independent risk factors for residual pulmonary abnormalities at 1-month follow-up. For residual abnormalities group, the patients with less consolidations and more parenchymal bands at baseline could progress on CT score after 1 month. There were no significant changes in the number of involved lung lobes and total CT score during the early convalescent stage. @*Conclusion@#The higher IL-6 level was a common independent risk factor for CT abnormalities at baseline and residual pulmonary abnormalities at 1-month follow-up. There were no obvious radiographic changes during the early convalescent stage in patients with residual pulmonary abnormalities.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996057

ABSTRACT

Medical homogenization in multi-campus hospital plays an essential role in leveraging the advantages of public hospitals, promoting the expansion of high-quality medical resources and balancing regional layout. The Second Affiliated Hospital Zhejiang University School of Medicine deeply used digital intelligence technology to build a new integrated mobile health service system consisting of internet hospital and 5G intelligent applications, which empowered medical efficiency in multi-campus hospital. This system broke the limitations of inconsistent medical resources, unbalanced discipline layout, and insufficient information connectivity in the construction of multi-campus hospitals, and achieved remarkable results in practice. It could provide reference for the multi-campus construction of other large public hospitals.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-993137

ABSTRACT

Objective:To evaluate the effects of split-filter dual-energy CT (SF-DECT) in improving image quality at low doses in the process of abdominal examinations for children.Methods:A preliminary study was conducted using child phantoms. Furthermore, 20 children aged 4-6 years were recruited prospectively for clinical validation from June 2020 to December 2020. Conventional single-energy CT (SECT) and SF-DECT were employed to scan the abdominal areas of the phantoms and children. Then, the CT values, image noise, contrast to noise ratios (CNRs), and image subjective scores of SF-DECT and SECT were compared under various doses (1, 2, 3, and 4 mGy).Results:For the phantoms under doses of 3 and 4 mGy, SF-DECT decreased the image noise by 18.9% and 23.6%, respectively, and increased the liver and kidney CNRs (CNR liv and CNR kid) by 12.8% and 31.9% at most, respectively, compared to SECT ( Z = 3.00, 5.17, P < 0.001). For children, SF-DECT decreased image noise ( Z = 4.64, P < 0.001) and increased CNR liv and CNR kid ( Z = 3.78, 3.39, P < 0.001). For both the phantoms and the children, the subjective scores of images scanned using the SF-DECT were higher than those scanned using the SECT ( Z = 1.96-3.80, P < 0.05). Conclusions:Compared with SECT, SF-DECT can improve the quality of children′s abdominal images. This technique has a certain prospect of optimizing abdominal CT for children. However, it is necessary to conduct in-depth clinical research to verify the result.

14.
Chinese Critical Care Medicine ; (12): 1304-1308, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1010944

ABSTRACT

OBJECTIVE@#To investigate the value of T2 mapping in the assessment of myocardial changes and prognosis in patients with acute ST segment elevation myocardial infarction (STEMI).@*METHODS@#A retrospective study was conducted. A total of 30 patients with acute STEMI admitted to Tianjin First Central Hospital from January 2021 to March 2022 were enrolled as the experimental group. At the same time, 30 age- and sex-matched healthy volunteers and outpatients with non-specific chest pain with no abnormalities in cardiac magnetic resonance (CMR) examination were selected as the control group. CMR was performed within 2 weeks after the diagnosis of STEMI, as the initial reference. A plain CMR review was performed 6 months later (chronic myocardial infarction, CMI). Plain scanning includes film sequence (CINE), T2 weighted short tau inversion recovery (T2-STIR), native-T1 mapping, and T2 mapping. Enhanced scanning includes first-pass perfusion, late gadolinium enhancement (LGE), and post-contrast T1 mapping. Quantitative myocardial parameters were compared between the two groups, before and after STEMI myocardial infarction. The receiver operator characteristic curve (ROC curve) was used to evaluate the diagnostic efficacy of native-T1 before myocardial contrast enhancement and T2 values in differentiating STEMI and CMI after 6 months.@*RESULTS@#There were no statistically significant differences in age, gender, heart rate and body mass index (BMI) between the two groups, which were comparable. The native-T1 value, T2 value and extracellular volume (ECV) were significantly higher than those in the control group [native-T1 value (ms): 1 434.5±165.3 vs. 1 237.0±102.5, T2 value (ms): 48.3±15.6 vs. 21.8±13.1, ECV: (39.6±13.8)% vs. (22.8±5.0)%, all P < 0.05]. In the experimental group, 12 patients were re-examined by plain CMR scan 6 months later. After 6 months, the high signal intensity on T2-STIR was still visible, but the range was smaller than that in the acute phase, and the native-T1 and T2 values were significantly lower than those in the acute phase [native-T1 value (ms): 1 271.0±26.9 vs. 1 434.5±165.3, T2 value (ms): 34.2±11.2 vs. 48.3±15.6, both P < 0.05]. ROC curve analysis showed that the area under the ROC curve (AUC) of native-T1 and T2 values in differentiating acute STEMI from CMI was 0.71 and 0.80, respectively. When native-T1 cut-off value was 1 316.0 ms, the specificity was 100% and the sensitivity was 53.3%; when T2 cut-off value was 46.7 ms, the specificity was 100% and the sensitivity was 73.8%.@*CONCLUSIONS@#The T2 mapping is a non-invasive method for the diagnosis of myocardial changes in patients with acute STEMI myocardial infarction, and can be used to to evaluate the clinical prognosis of patients.


Subject(s)
Humans , ST Elevation Myocardial Infarction/diagnosis , Contrast Media , Prognosis , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Gadolinium , Myocardium/pathology , Myocardial Infarction , Predictive Value of Tests
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970620

ABSTRACT

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 μg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Subject(s)
Humans , Mycotoxins/analysis , Coix , Aflatoxin B1/analysis , Chromatography, Liquid/methods , Food Contamination/analysis , Tandem Mass Spectrometry/methods
16.
J Clin Neurosci ; 106: 8-13, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228504

ABSTRACT

BACKGROUND: Biopsy of intrinsic brainstem tumours presumed to be diffuse midline gliomas (previously known as DIPG) is controversial. Surgery has risks of injury to the eloquent brainstem and may not have direct benefit to the patient. Technological improvements in operative adjuncts have allowed the role of biopsy for paediatric brainstem lesions to be revisited with new insights. This study aims to evaluate our institutional experience in brainstem biopsy. METHODS: This is an ethics-approved retrospective study based in KK Women's and Children's Hospital. Patients diagnosed with intrinsic brainstem tumours and managed by the Neurosurgical Service were included. Variables of interest included patient demographics, neuroimaging features, type of surgery, histological and molecular diagnosis, treatment, and outcomes. RESULTS: From 2006 to 2021, a total of 27 brainstem intrinsic tumours were referred to the Neurosurgical Service. Eleven (40.7 %) patients underwent stereotactic biopsy and 10 (37 %) had open biopsies. Histologically, 10 (37 %) were confirmed to be high grade gliomas, eight (29.6 %) were low grade gliomas and 3 (11.1 %) were malignant embryonal tumours. No negative diagnostic results or permanent postoperative complications were encountered. Five patients went on to have their tumours interrogated via next-generation sequencing to look for targetable mutations. The remaining 6 (22.2 %) patients did not undergo biopsy, whereby 1 of them is still alive after 6 years. CONCLUSION: Biopsy of paediatric brainstem intrinsic tumours is a safe procedure that concurrs with accurate tissue diagnosis. This option can be offered to affected patients, especially to identify relevant markers for targeted therapy.


Subject(s)
Brain Stem Neoplasms , Glioma , Child , Humans , Female , Retrospective Studies , Singapore , Brain Stem Neoplasms/diagnosis , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/surgery , Biopsy/methods , Glioma/diagnosis , Glioma/genetics , Glioma/surgery , Hospitals
17.
Water Res ; 225: 119172, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191530

ABSTRACT

Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.


Subject(s)
Metals, Rare Earth , Microbiota , RNA, Ribosomal, 16S/genetics , Metals, Rare Earth/analysis , Mining , Archaea/genetics , China
18.
J Neurooncol ; 160(1): 41-53, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36045266

ABSTRACT

PURPOSE: Non-germinomatous germ cell tumors (NGGCTs) are rare pediatric conditions. This multicenter study using Asian multinational patient data investigated treatment outcomes and prognostic factors for NGGCTs. METHODS: Medical records of 251 patients with NGGCTs treated from 1995 to 2015 were retrospectively analyzed from participating centers in Asian countries (Korea, Taiwan, Singapore, and Japan). RESULTS: The median follow up was 8.5 years (95% CI 7.8-9.9). In the total cohort, 5-year event-free survival (EFS) and overall survival (OS) rates were 78.2% and 85.4%, respectively. In 17.9% of the patients, diagnosis was determined by tumor markers alone (alpha-fetoprotein ≥ 10 ng/mL (Korea) or > 25 ng/mL (Taiwan and Singapore), and/or ß-human chorionic gonadotropin (ß-hCG) ≥ 50 mIU/mL). Patients with immature teratomas and mature teratomas comprised 12.0% and 8.4%, respectively. The 5-year EFS rate was higher in patients with histologically confirmed germinoma with elevated ß-hCG (n = 28) than those in patients with malignant NGGCTs (n = 127). Among malignant NGGCTs, patients with choriocarcinoma showed the highest 5-year OS of 87.6%, while yolk sac tumors showed the lowest OS (68.8%). For malignant NGGCT subgroups, an increase in serum ß-hCG levels by 100 mIU/mL was identified as a significant prognostic factor associated with the EFS and OS. CONCLUSION: Our result shows excellent survival outcomes of overall CNS NGGCT. However, treatment outcome varied widely across the histopathologic subgroup of NGGCT. Hence, this study suggests the necessity for accurate diagnosis by surgical biopsy and further optimization of diagnosis and treatment according to the histopathology of NGGCTs. Future clinical trials should be designed for individualized treatments for different NGGCTs subsets.


Subject(s)
Brain Neoplasms , Germinoma , Neoplasms, Germ Cell and Embryonal , Male , Humans , Child , Retrospective Studies , Prognosis , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy , Germinoma/pathology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Chorionic Gonadotropin, beta Subunit, Human
19.
J Med Internet Res ; 24(11): e39748, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36005841

ABSTRACT

BACKGROUND: The field of oncology is at the forefront of advances in artificial intelligence (AI) in health care, providing an opportunity to examine the early integration of these technologies in clinical research and patient care. Hope that AI will revolutionize health care delivery and improve clinical outcomes has been accompanied by concerns about the impact of these technologies on health equity. OBJECTIVE: We aimed to conduct a scoping review of the literature to address the question, "What are the current and potential impacts of AI technologies on health equity in oncology?" METHODS: Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines for scoping reviews, we systematically searched MEDLINE and Embase electronic databases from January 2000 to August 2021 for records engaging with key concepts of AI, health equity, and oncology. We included all English-language articles that engaged with the 3 key concepts. Articles were analyzed qualitatively for themes pertaining to the influence of AI on health equity in oncology. RESULTS: Of the 14,011 records, 133 (0.95%) identified from our review were included. We identified 3 general themes in the literature: the use of AI to reduce health care disparities (58/133, 43.6%), concerns surrounding AI technologies and bias (16/133, 12.1%), and the use of AI to examine biological and social determinants of health (55/133, 41.4%). A total of 3% (4/133) of articles focused on many of these themes. CONCLUSIONS: Our scoping review revealed 3 main themes on the impact of AI on health equity in oncology, which relate to AI's ability to help address health disparities, its potential to mitigate or exacerbate bias, and its capability to help elucidate determinants of health. Gaps in the literature included a lack of discussion of ethical challenges with the application of AI technologies in low- and middle-income countries, lack of discussion of problems of bias in AI algorithms, and a lack of justification for the use of AI technologies over traditional statistical methods to address specific research questions in oncology. Our review highlights a need to address these gaps to ensure a more equitable integration of AI in cancer research and clinical practice. The limitations of our study include its exploratory nature, its focus on oncology as opposed to all health care sectors, and its analysis of solely English-language articles.


Subject(s)
Artificial Intelligence , Health Equity , Humans , Health Care Sector , Healthcare Disparities , Income
20.
Front Oncol ; 12: 893769, 2022.
Article in English | MEDLINE | ID: mdl-35646680

ABSTRACT

Background: Detection of circulating tumor cells (CTCs) is a promising technology in tumor management; however, the slow development of CTC identification methods hinders their clinical utility. Moreover, CTC detection is currently challenging owing to major issues such as isolation and correct identification. To improve the identification efficiency of glioma CTCs, we developed a karyoplasmic ratio (KR)-based identification method and constructed an automatic recognition algorithm. We also intended to determine the correlation between high-KR CTC and patients' clinical characteristics. Methods: CTCs were isolated from the peripheral blood samples of 68 glioma patients and analyzed using DNA-seq and immunofluorescence staining. Subsequently, the clinical information of both glioma patients and matched individuals was collected for analyses. ROC curve was performed to evaluate the efficiency of the KR-based identification method. Finally, CTC images were captured and used for developing a CTC recognition algorithm. Results: KR was a better parameter than cell size for identifying glioma CTCs. We demonstrated that low CTC counts were independently associated with isocitrate dehydrogenase (IDH) mutations (p = 0.024) and 1p19q co-deletion status (p = 0.05), highlighting its utility in predicting oligodendroglioma (area under the curve = 0.770). The accuracy, sensitivity, and specificity of our algorithm were 93.4%, 81.0%, and 97.4%, respectively, whereas the precision and F1 score were 90.9% and 85.7%, respectively. Conclusion: Our findings remarkably increased the efficiency of detecting glioma CTCs and revealed a correlation between CTC counts and patients' clinical characteristics. This will allow researchers to further investigate the clinical utility of CTCs. Moreover, our automatic recognition algorithm can maintain high precision in the CTC identification process, shorten the time and cost, and significantly reduce the burden on clinicians.

SELECTION OF CITATIONS
SEARCH DETAIL
...