Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 535
Filter
2.
Bioorg Chem ; 151: 107712, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146761

ABSTRACT

Ketolides (3-keto) such as TE-802 and acylides (3-O-acyl) like TEA0929 are ineffective against constitutively resistant pathogens harboring erythromycin ribosomal methylation (erm) genes. Following our previous work on alkylides (3-O-alkyl), we explored the structure-activity relationships of hybrids combining (R/S) 3-descladinosyl erythromycin with 6/7-quinolone motifs, featuring extended ether-linked spacers, with a focus on their efficacy against pathogens bearing constitutive erm gene resistance. Optimized compounds 17a and 31f not only reinstated efficacy against inducibly resistant pathogens but also demonstrated significantly augmented activities against constitutively resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes, which are typically refractory to existing C-3 modified macrolides. Notably, hybrid 31f (coded ZN-51) represented a pioneering class of agents distinguished by its dual modes of action, with ribosomes as the primary target and topoisomerases as the secondary target. As a novel chemotype of macrolide-quinolone hybrids, alkylide 31f is a valuable addition to our armamentarium against macrolide-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Macrolides , Microbial Sensitivity Tests , Quinolones , Streptococcus pneumoniae , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/chemical synthesis , Macrolides/chemistry , Macrolides/pharmacology , Streptococcus pneumoniae/drug effects , Molecular Structure , Drug Design , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/enzymology , Dose-Response Relationship, Drug , Ethers/chemistry , Ethers/pharmacology , Ethers/chemical synthesis
3.
Bioresour Technol ; 411: 131349, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39182791

ABSTRACT

By utilizing the conformational selectivity of biosynthesis and the flexibility of chemical synthesis, researchers have formulated metabolic engineering-based semi-synthetic approaches that initiate with the final product's structure and identify key biosynthesis intermediates. Nonetheless, these tailored semi-synthetic routes focused on end-products, neglecting the possibility of biobased intermediates as a platform for derivatization. To address this challenge, this studyproposed a novel strategy resembling chemosynthesis-style divergent exploration to amplify the significance of biobased intermediates, in the case of geranylgeraniol (GGOH). Using the novel bifunctional terpene synthase PTTC066 and systematic metabolic engineering modifications, the engineered yeast straindemonstrated high GGOH production levels (3.32 g/L, 0.039 g/L/h). This platformenabled the semi-synthesis of various pharmaceuticals, including the anti-ulcer drug teprenone, the osteoporosis treatment drug menaquinone-4, and introduced a novel route for synthesizingα-tocotrienol. This study offers a fresh outlook on semi-synthetic approaches, opening avenues for improvements, substitutions, and innovations in industrial production processes.

4.
J Ethnopharmacol ; 336: 118726, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181279

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides), a traditional Tibetan medicinal herb, exhibits protective effects against cardiovascular and respiratory diseases. Although Sea buckthorn extract (SBE) has been confirmed to alleviate airway inflammation in mice, its therapeutic effect and underlying mechanism on chronic obstructive pulmonary disease (COPD) requires further clarification. AIM OF THE STUDY: To elucidate the alleviative effect and molecular mechanism of SBE on lipopolysaccharides (LPS)/porcine pancreatic elastase (PPE)-induced COPD by blocking ferroptosis. METHODS: The anti-ferroptotic effects of SBE were evaluated in human BEAS-2B bronchial epithelial cells using CCK8, RT-qPCR, western blotting, and transmission electron microscopy. Transwell was employed to detect chemotaxis of neutrophils. COPD model was induced by intranasally administration of LPS/PPE in mice and measured by alterations of histopathology, inflammation, and ferroptosis. RNA-sequencing, western blotting, antioxidant examination, flow cytometry, DARTS, CETSA, and molecular docking were then used to investigate its anti-ferroptotic mechanisms. RESULTS: In vitro, SBE not only suppressed erastin- or RSL3-induced ferroptosis by suppressing lipid peroxides (LPOs) production and glutathione (GSH) depletion, but also suppressed ferroptosis-induced chemotactic migration of neutrophils via reducing mRNA expression of chemokines. In vivo, SBE ameliorated LPS/PPE-induced COPD phenotypes, and inhibited the generation of LPOs, cytokines, and chemokines. RNA-sequencing showed that p53 pathway and mitogen-activated protein kinases (MAPK) pathway were implicated in SBE-mediated anti-ferroptotic action. SBE repressed erastin- or LPS/PPE-induced overactivation of p53 and MAPK pathway, thereby decreasing expression of diamine acetyltransferase 1 (SAT1) and arachidonate 15-lipoxygenase (ALOX15), and increasing expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Mechanistically, erastin-induced elevation of reactive oxygen species (ROS) was reduced by SBE through directly scavenging free radicals, thereby contributing to its inhibition of p53 and MAPK pathways. CETSA, DARTS, and molecular docking further showed that ROS-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) may be the target of SBE. Overexpression of NOX4 partially impaired the anti-ferroptotic activity of SBE. CONCLUSION: Our results demonstrated that SBE mitigated COPD by suppressing p53 and MAPK pro-ferroptosis pathways via directly scavenging ROS and blocking NOX4. These findings also supported the clinical application of Sea buckthorn in COPD therapy.

5.
Eur J Med Chem ; 276: 116630, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38972081

ABSTRACT

We report here on the structure-activity relationships of hybrids combining 3-descladinosyl clarithromycin with quinolones linked by extended diamine connectors. Several hybrids, exemplified by 23Bc, 23Be, 23Bf, 26Be, and 30Bc, not only restored potency against inducibly resistant pathogens but also exhibited significantly enhanced activities against constitutively resistant strains of Staphylococcus pneumoniae and Staphylococcus pyogenes, which express high-level resistance independent of clarithromycin or erythromycin induction. Additionally, the novel hybrids showed susceptibility against Gram-negative Haemophilus influenzae. Notably, hybrid 23Be demonstrated dual modes of action by inhibiting both protein synthesis and DNA replication in vitro and in vivo. Given these promising characteristics, 23Be emerges as a potential candidate for the treatment of community-acquired bacterial pneumonia.


Subject(s)
Anti-Bacterial Agents , Clarithromycin , Drug Design , Microbial Sensitivity Tests , Structure-Activity Relationship , Clarithromycin/pharmacology , Clarithromycin/chemistry , Clarithromycin/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Structure , Diamines/chemistry , Diamines/pharmacology , Diamines/chemical synthesis , Haemophilus influenzae/drug effects , Oximes/chemistry , Oximes/pharmacology , Oximes/chemical synthesis , Dose-Response Relationship, Drug , Humans , Animals , Streptococcus pyogenes/drug effects , Drug Resistance, Bacterial/drug effects
6.
Metabolism ; 160: 155980, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053691

ABSTRACT

BACKGROUND: The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS: The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls were performed, excluding patients previously treated with glucocorticoids. SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity and responsive genes of mineralocorticoid and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS: The demographic characteristics of COVID-19 patients were comparable with those of controls. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors and their responsive genes in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION: Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with increased inflammation, enhanced differentiation and elevated dual-ZG/ZF identity cells, alongside suppressed corticosteroid responsiveness. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of the adrenal axis and corticosteroid sensitivity.

7.
Cell Discov ; 10(1): 75, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992047

ABSTRACT

Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.

8.
ACS Appl Mater Interfaces ; 16(28): 36667-36677, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38955357

ABSTRACT

While wavelength-dependent photodegradation of organic solar cells (OSCs) under visible light is typically discussed in terms of UV/blue light-activated phenomena, we recently demonstrated wavelength-dependent degradation rates up to 660 nm for PM6:Y6. In this study, we systematically investigated this phenomenon for a broad variety of devices based on different donor:acceptor combinations. We found that the spectral composition of the light used for degradation, tuned in a spectral range from 457 to 740 nm and under high irradiances of up to 30 suns, has a crucial influence on the device stability of almost all tested semiconductors. The relevance of this phenomenon was investigated in the context of simulated AM1.5 illumination with metal halide lamps and white LEDs. It is concluded that the current stability testing protocols in OSC research have to be adjusted to account for this effect to reveal the underlying physics of this still poorly understood mechanism.

9.
Heliyon ; 10(11): e31885, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845987

ABSTRACT

Background: Dystonia is a kind of movement disorder but its pathophysiological mechanisms are still largely unknown. Recent evidence reveals that genetical defects may play important roles in the pathogenesis of dystonia. Objectives and Methods: -To explore possible causative genes in Chinese dystonia patients, DNA samples from 42 sporadic patients with isolated cervical dystonia were subjected to whole-exome sequencing. Rare deleterious variants associated with dystonia phenotype were screened out and then classified according to the American College of Medical Genetics and Genomics (ACMG) criteria. Phenolyzer was used for analyzing the most probable candidates correlated with dystonia phenotype, and SWISS-MODEL server was for predicting the 3D structures of variant proteins. Results: Among 42 patients (17 male and 25 female) recruited, a total of 36 potentially deleterious variants of dystonia-associated genes were found in 30 patients (30/42, 71.4 %). Four disease-causing variants including a pathogenic variant in PLA2G6 (c.797G > C) and three likely pathogenic variants in DCTN1 (c.73C > T), SPR (c.1A > C) and TH (c.56C > G) were found in four patients separately. Other 32 variants were classified as uncertain significance in 26 patients. Phenolyzer prioritized genes TH, PLA2G6 and DCTN1 as the most probable candidates correlated with dystonia phenotype. Although 3D prediction of DCTN1 and PLA2G6 variant proteins detected no obvious structural alterations, the mutation in DCTN1 (c.73C > T:p.Arg25Trp) was closely adjacent to its key functional domain. Conclusion: Our whole-exome sequencing results identified a novel variant in DCTN1 in sporadic Chinese patients with isolated cervical dystonia, which however, needs our further study on its exact role in dystonia pathogenesis.

10.
Angew Chem Int Ed Engl ; 63(33): e202409019, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38785222

ABSTRACT

Urea electrosynthesis from carbon dioxide (CO2) and nitrate (NO3 -) is an alternative approach to traditional energy-intensive urea synthesis technology. Herein, we report a CuAu single-atom alloy (SAA) with electronic metal support interaction (EMSI), achieving a high urea yield rate of 813.6 µg h-1 mgcat -1 at -0.94 V versus reversible hydrogen electrode (vs. RHE) and a Faradaic efficiency (FE) of 45.2 % at -0.74 V vs. RHE. In situ experiments and theoretical calculations demonstrated that single-atom Cu sites modulate the adsorption behavior of intermediate species. Bimetallic sites synergistically accelerate C-N bond formation through spontaneous coupling of *CO and *NO to form *ONCO as key intermediates. More importantly, electronic metal support interaction between CuAu SAA and CeO2 carrier further modulates electron structure and interfacial microenvironment, endowing electrocatalysts with superior activity and durability. This work constructs SAA electrocatalysts with EMSI effect to tailor C-N coupling at the atomic level, which can provide guidance for the development of C-N coupling systems.

11.
Phytomedicine ; 129: 155663, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759345

ABSTRACT

BACKGROUNDS: Allergic rhinitis (AR) is a non-infectious chronic inflammation of the nasal mucosa mainly mediated by immunoglobulin E (IgE) in atopic individuals after exposure to allergens. The application of AR guideline-recommended pharmacotherapies can rapidly relieve symptoms of AR but with poor long-term efficacy, and many of these therapies have side effects. Many natural products and their derivatives have shown potential therapeutic effects on AR with fewer side effects. OBJECTIVES: This review aims to expand understanding of the roles and mechanisms of natural compounds in the treatment of AR and to highlight the importance of utilizing natural products in the treatment of AR. MATERIAL AND METHOD: We conducted a systematic literature search using PubMed, Web of Science, Google Scholar, and Clinical Trials. The search was performed using keywords including natural products, natural compounds, bioproducts, plant extracts, naturally derived products, natural resources, allergic rhinitis, hay fever, pollinosis, nasal allergy. Comprehensive research and compilation of existing literature were conducted. RESULTS: This article provided a comprehensive review of the potential therapeutic effects and mechanisms of natural compounds in the treatment of AR. We emphasized that natural products primarily exert their effects by modulating signalling pathways such as NF-κB, MAPKs, STAT3/ROR-γt/Foxp3, and GATA3/T-bet, thereby inhibiting the activation and expansion of allergic inflammation. We also discussed their toxicity and clinical applications in AR therapy. CONCLUSION: Taken together, natural products exhibit great potential in the treatment of AR. This review is also expected to facilitate the application of natural products as candidates for treating AR. Furthermore, drug discovery based on natural products has a promising prospect in AR treatment.


Subject(s)
Biological Products , Rhinitis, Allergic , Humans , Rhinitis, Allergic/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phytotherapy , Animals , Signal Transduction/drug effects , Immunoglobulin E
12.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730227

ABSTRACT

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Subject(s)
Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
13.
World J Stem Cells ; 16(2): 207-227, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38455101

ABSTRACT

BACKGROUND: Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC. AIM: To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism. METHODS: CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments in vitro and tumor growth, immunohistochemistry and immunofluorescence assessments in vivo. RESULTS: Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality in vitro, and suppressed the tumor of CCSC-derived xenograft tumors in vivo. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling in vitro. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression. CONCLUSION: VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.

14.
Pathol Res Pract ; 256: 155251, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490097

ABSTRACT

Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.


Subject(s)
Adrenal Cortex , COVID-19 , Humans , Critical Illness , Retrospective Studies , Adrenal Glands , Adrenal Cortex Hormones
15.
Small ; 20(28): e2308781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308349

ABSTRACT

A Lanthanum ion (La3+) incorporation strategy is implemented to modify Ba2Bi2O6-based double perovskite photoelectrodes. X-ray diffraction (XRD) characterization shows that highly crystalline Ba2La0.4Bi1.6O6 double perovskites with the space group I2/m are successfully prepared. UV-vis absorption spectra and the Tauc-plot reveal an optical band gap Eg ≈1.57 ± 0.01 eV. A thickness dependence of the photoelectrodes photoelectrochemical (PEC) performance shows that the submicron (≈1 µm) 4-times spin-coated thin film photoelectrode displays strong p-type conductivity, which delivers an encouraging photocurrent density of 0.88 mA cm-2 at 0.25 VRHE under AM 1.5G illumination. 10-times coated and 20-times coated medium thick (125.8-197 µm) photoelectrodes that exhibit moderate p-type conductivity, show further enhanced photocurrent densities of 1.5 mA cm-2 at 0 VRHE. In contrast, charge recombination centers existing in a standard thick pellet (≈500 µm) Ba2La0.4Bi1.6O6 photoelectrode can quench photo-generated charge carriers and greatly undermine PEC activities. The approach to doping at the Bi(III) sites contrasts with earlier efforts that focus on doping at the Bi(V) sites and thus paves the way for further tailoring a family of novel promising photocathode materials for efficient solar-water conversion devices.

16.
Int J Cancer ; 154(12): 2075-2089, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38367273

ABSTRACT

Females with existing high-risk HPV (HR-HPV) infections remain at risk of subsequent multiple or recurrent infections, on which benefit from HPV vaccines was under-reported. We pooled individual-level data from four large-scale, RCTs of AS04-HPV-16/18 vaccine to evaluate efficacy and immunogenicity in females DNA-positive to any HR-HPV types at first vaccination. Females receiving the AS04-HPV-16/18 vaccine in the original RCTs constituted the vaccine group in the present study, while those unvaccinated served as the control group. Vaccine efficacy (VE) against new infections and associated cervical intraepithelial neoplasia (CIN) 2+ in females DNA-negative to the considered HR-HPV type but positive to any other HR-HPV types, VE against reinfections in females DNA-positive to the considered HR-HPV type but cleared naturally during later follow-up, and levels of anti-HPV-16/18 IgG were assessed. Our final analyses included 5137 females (vaccine group = 2532, control group = 2605). The median follow-up time was 47.88 months (IQR: 45.72-50.04). For the prevention of precancerous lesions related to the non-infected HR-HPV types at baseline, VE against HPV-16/18 related CIN 2+ was 82.70% (95% CI: 63.70-93.00%). For the prevention of reinfections related to the infected HR-HPV types following natural clearance, VE against HPV-16/18 12MPI was non-significant (p > .05), albeit robust immunity persisted for at least 48 months. Females with existing HR-HPV infections at first vaccination still benefit from vaccination in preventing precancers related to the non-infected types at baseline. VE against reinfections related to the infected types following natural clearance remains to be further investigated.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16 , Papillomavirus Vaccines/therapeutic use , Reinfection/complications , Human papillomavirus 18 , Vaccination , DNA
17.
Phytomedicine ; 124: 155263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181532

ABSTRACT

BACKGROUND: Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE: Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS: Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS: ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1ß, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION: Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.


Subject(s)
Artemisia annua , Artemisinins , Colitis, Ulcerative , Animals , Mice , NF-kappa B/metabolism , Ubiquitin-Conjugating Enzymes , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Lactones , Inflammation/metabolism
18.
Cell Res ; 34(2): 140-150, 2024 02.
Article in English | MEDLINE | ID: mdl-38182887

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Receptors, LDL , Animals , Humans , Mice , Endocytosis , Glycoproteins/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever, Crimean/prevention & control , Receptors, LDL/metabolism , Virus Internalization
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1019482

ABSTRACT

Perioperative protection of parathyroid function is the focus and difficulty of thyroid surgery and also a problem that surgeons must pay attention to. It can be divided into three stages: preoperative management, intraoperative management, and postoperative management. Preoperative management mainly evaluates thyroid and parathyroid function and timely and effective treatment plan adjustment when functional abnormalities are found. Intraoperative management includes identifying and protecting the parathyroid gland, assessing and protecting parathyroid blood flow, etc. Postoperative management includes assessment of postoperative parathyroid function, effective treatment, and follow-up. Among them, intraoperative management is the key. Familiarity with the anatomical structure is the basis of parathyroid function protection, and visual recognition is an essential skill. Secondly, reasonable selection of surgical methods and application of fine membrane dissection technology can avoid the collateral damage of energy instruments to the parathyroid gland and nourishing blood vessels, and finally, timely use of autologous transplantation technology. Using assistive techniques such as imaging can help accurately locate the parathyroid gland and assess its blood flow before surgery. Preoperative localization is even more critical for hyperparathyroidism due to the non-uniqueness and uncertainty of the location of the diseased glands. The objective of treatment is to remove the diseased parathyroid glands and protect normal parathyroid tissue. To standardize the functional protection of parathyroid gland during the perioperative period, domestic guidelines and expert consensus have proposed the "1+X" basic principle and the "1+X+1" general strategy of parathyroid gland protection, guiding to help reduce the incidence of parathyroid injury during thyroid surgery.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021134

ABSTRACT

In the past decade,thyroid surgery in China has developed rapidly.With the improvement of thyroid diagnosis technology,the standardization of thyroid surgery,the clinical application of systematic therapy,and the progress in fundamental research,thyroid surgery has achieved all-round development.Patients with thyroid disease have benefited significantly from safer,more standardized,more effective,and more diverse treatments,which results in the remarkable increase in the 5-year survival rate.Moreover,Chinese experts have published a number of guidelines and expert consensus related to thyroid surgery,which promotes the standardization of the diagnosis and treatment of thyroid disease.Additionally,the specialized multidisciplinary teams in cancer centers allow patients to receive more standardized diagnosis and treatment of complex thyroid diseases.In the present article,we summarize the important developments of China's thyroid surgery in the past decade,including preoperative diagnosis technology,surgical methods,operation safety,application of minimally invasive techniques,diagnosis and treatment of special thyroid cancers,multidisciplinary diagnosis and treatment models,and standardized postoperative managements.We expect to popularize the concept of standardized diagnosis and treatment of thyroid diseases,and improve the level of standardized diagnosis and treatment in thyroid surgery.

SELECTION OF CITATIONS
SEARCH DETAIL