Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Acta Pharmaceutica Sinica ; (12): 419-427, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-922924

ABSTRACT

GC-MS metabolomics was used to investigate the effects of fudosteine on lung cancer A549 cells in an inflammatory microenvironment. Eleven metabolites (malic acid, isoleucine, lactose, galactinol, creatinine, gluconic acid, oleic acid, phosphate, S-carboxymethyl-L-cysteine, uridine and tagatose) were identified in the metabolomics results and could be used as biomarkers of fudosteine treatment. Pathway enrichment analysis showed that the metabolic pathways of amino acids including isoleucine, valine, leucine, glycine, serine and threonine were significantly altered, as were the metabolic pathways of carbohydrates such as galactose and pentose phosphate. Fudosteine significantly reduced the level of inflammatory factors in A549 cells and corrected the inflammatory microenvironment by interfering with the effects of amino acid metabolites and amino acid metabolism pathways. This study reveals that fudosteine may be able to inhibit the continuous inflammatory response and prevent the further progression of lung cancer by suppressing the inflammatory microenvironment.

2.
Mikrochim Acta ; 187(10): 561, 2020 09 12.
Article in English | MEDLINE | ID: mdl-32920695

ABSTRACT

In2O3@Cu2MoS4 nanocomposite with superior photoelectrochemical (PEC) performance is used for the first time as a photoactivity material, and a signal-off PEC biosensing platform for miRNA detection has been successfully constructed. Firstly, the Cu2MoS4 nanosheets are synthesized by a hydrothermal method, and then, the homogeneous In2O3 nanoparticles (In2O3 NPs) are synthesized by calcination in the air. The In2O3@Cu2MoS4 nanocomposite is constructed with the Cu2MoS4 nanosheets as matrix and In2O3 NPs as sensitizer through a layer-by-layer assembly strategy. The nanocomposite with a tight interface and the matched band structure restrains the electron-hole pair recombination. Under visible light (400-700 nm), the nanocomposite exhibits a strong initial signal. With the catalyzed hairpin assembly, dozens of PbS quantum dots (QDs) are introduced on the surface of an electrode, significantly reducing the photocurrent of n-type In2O3@Cu2MoS4. Since PbS QDs can compete with the nanocomposite for light energy and electron donors, the signal decreased. Under optimal conditions, the biosensor manifests a broad linear range (1 fM-1 nM) and a low detection limit of about 0.57 fM, at a working potential of 0 V (vs. Ag/AgCl). The recovery of spiked human serum is between 94.0 and 102%, and the relative standard deviation (RSD) is between 1.3 and 2.7%. Therefore, the as-fabricated biosensor exhibits a potential for the determination of miRNA-21 in practical applications.Graphical abstract The In2O3@Cu2MoS4 nanocomposite owns a strong anode photocurrent signal, which can be used as a photoactive material to construct a "signal-off" biosensor for the detection of miRNA in non-enzymatically catalyzed hairpin assembly (CHA) reaction.


Subject(s)
Copper/metabolism , Electrochemical Techniques/methods , MicroRNAs/metabolism , Molybdenum/metabolism , Nanocomposites/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...