Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(31): 7007-7013, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37523253

ABSTRACT

We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.

2.
J Magn Reson ; 333: 107099, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34775282

ABSTRACT

Under typical conditions for dynamic nuclear polarization (DNP)-temperature about 1 K or below and magnetic field about 3 T or higher-the polarization agent causes nuclear dipolar order to relax up to four orders of magnitude faster than nuclear polarization. However, as far as we know, this ultra-fast dipolar relaxation has thus far not been explained in a satisfactory way. We report similar ultra-fast dipolar relaxation of proton spins in naphthalene due to the photo-excited triplet spin of pentacene and propose a three-step mechanism that explains such ultra-fast dipolar relaxation by ground state electron spins as well as by photo-excited triplet spins: nuclear spin diffusion transfers nuclear dipolar order-that is nuclear dipolar energy-spatially to near the electron spins. Flip-flop transitions between nuclear spins near the electron spins convert this dipolar energy into electron-nuclear interaction energy. Finally electron spin-lattice relaxation or decay of the triplet spin transfers the latter type of energy to the lattice. We will show that this mechanism quantitatively explains the observed dipolar relaxation rate. The proposed mechanism is expected to contribute to dipolar relaxation in any spin system containing more than one spin species. It tends to create a stationary state, in which all dipolar interactions are combined in a single energy reservoir described by a single spin temperature. As an example we suggest that the addition of a relaxation agent in samples used for DNP may significantly accelerate the relaxation of the dipolar energy of the polarization agent, and as a result could possibly reduce the contribution of thermal mixing (TM) to DNP.

3.
J Magn Reson ; 326: 106948, 2021 May.
Article in English | MEDLINE | ID: mdl-33721587

ABSTRACT

The spectrum of the electron spin-spin interactions largely determines which mechanism is responsible for the growth of the nuclear spin polarization in dynamic nuclear polarization (DNP). When electron spin-spin interactions are weak and their spectrum is narrow, the solid effect (SE) dominates the process. When they are stronger, the cross effect (CE) and thermal mixing (TM) come into play. Then a narrow spectrum favours the CE-that is an exchange of electron Zeeman energy with the nuclear spins-and a broad spectrum also TM-that is an exchange of electron spin-spin interaction energy with the nuclear spins. Moreover, the spectrum of the electron spin-spin interactions critically determines the rate of spectral diffusion of electron spin polarization across the electron spin resonance (ESR) line, and the associated conversion of electron Zeeman energy into electron spin-spin interaction energy. This way electron spin-spin interactions indirectly influence the DNP process. The present work describes Monte Carlo simulations of the spectrum of these interactions for approximately spherical radicals in glasses and analytical approximations of the simulation results. As an example application expressions for the relative strengths of the energy flows due to the CE and TM are derived.

SELECTION OF CITATIONS
SEARCH DETAIL
...