Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 104(1): 17-29, 2002 Jan.
Article in English | MEDLINE | ID: mdl-12579424

ABSTRACT

Diversity in 20 microsatellite loci of wild emmer wheat, Triticum dicoccoides, was examined in 15 populations (135 genotypes) representing a wide range of ecological conditions of soil, temperature, and water availability, in Israel and Turkey. An extensive amount of diversity at microsatellite loci was observed despite the predominantly selfing nature of this plant species. The 20 Gatersleben wheat microsatellites (GWM), representing 13 chromosomes of genomes A and B of wheat, revealed a total of 364 alleles, with an average of 18 alleles per GWM marker (range: 5-26). The proportion of polymorphic loci per population averaged 0.90 (range: 0.45- 1.00); genic diversity, He, averaged 0.50 (range 0.094- 0.736); and Shannon's information index averaged 0.84 (range 0.166-1.307). The coefficients of genetic distance between populations were high and averaged D=1.862 (range 0.876-3.320), an indication of sharp genetic divergence over short distances. Interpopulation genetic distances showed no association with geographic distance between the population sites of origin, which ruled out a simple isolation by distance model. Genetic dissimilarity values between genotypes were used to produce a dendrogram of the relationships among wild wheat populations by the unweighted pair-group method with arithmetic averages (UPGMA). The results showed that all the wild emmer wheat populations could be distinguished. Microsatellite analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides, originating from diverse ecogeographical sites in Israel and Turkey, with 88% of the 135 genotypes correctly classified into sites of origin by discriminant analysis. Our present microsatellite results are non-random and in agreement with the previously obtained allozyme and RAPD patterns, although the genetic-diversity values obtained with microsatellites are much higher. Significant correlates of microsatellite markers with various climatic and soil factors suggest that, as in allozymes and RAPDs, natural selection causes adaptive microsatellite ecogeographical differentiation, not only in coding, but most importantly in non-coding genomic regions. Hence, the concept of "junk DNA" needs to be replaced by at least partly regulatory DNA. The obtained results suggest that microsatellite markers are useful for the estimation of genetic diversity in natural populations of T. dicoccoidesand for the tagging of agronomically important traits derived from wild emmer wheat.

2.
Theor Appl Genet ; 106(1): 67-73, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12582872

ABSTRACT

A database of 502 recent European wheat varieties, mainly of winter type, was constructed using 19 wheat microsatellites and one secalin-specific marker. All datapoints were generated in at least two laboratories using different techniques for fragment analysis. An overall level of >99.5% accuracy was achieved. The 199 alleles detected allowed discrimination between all of the varieties except duplicates, and varieties derived from identical parents. Approximately 25% of the varieties showed some heterogeneities, with the highest level of heterogeneity in south-eastern European material. The highest genetic diversity and the highest number of rare alleles were found in varieties from southern Europe. The relative allele frequencies varied for most microsatellites in different geographical regions.


Subject(s)
Databases, Genetic , Microsatellite Repeats , Triticum/genetics , DNA Fingerprinting
3.
Theor Appl Genet ; 105(6-7): 1019-1026, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12582929

ABSTRACT

The aim of this study was to evaluate the suitability of sequence tagged microsatellite site (STMS) markers for varietal identification and discrimination in tomato. For this purpose, a set of 20 STMS primer pairs was used to construct a database containing the molecular description of the most common varieties (>500) of tomato grown in Europe. The database was built and tested by a consortium of five European laboratories each using a different STMS detection system. In this way, it could be demonstrated that the STMS markers and database were suitable for use in network activities where a common database is being established on a continuing basis with data from different laboratories.Microsatellite polymorphism in tomato was found to be relatively low. The number of alleles per locus ranged from 2 to 8 with an average of 4.7 alleles per locus. Nevertheless, more than 90% of the varieties had different microsatellite profiles. A "blind testing" exercise showed that in general, identification of unknown samples (or detecting the most similar variety) with the 20 markers and the database was relatively easy for homogeneous varieties but less certain with heterogeneous varieties when using pools of 6 individuals.

4.
Genetics ; 149(4): 2007-23, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9691054

ABSTRACT

Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 x W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.


Subject(s)
Microsatellite Repeats , Triticum/genetics , Base Sequence , Chromosomes/genetics , DNA Primers/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Gene Library , Genetic Linkage , Genetic Techniques , Genome, Plant , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Restriction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...