Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 129: 180-184, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28866261

ABSTRACT

Based on AMS analysis, it is shown that no Pu signals from the Fukushima accident could be discerned in marine sediments collected 1.5-57km away from the Fukushima Da-ichi power plant (FDNPP), which were clearly influenced by accident-derived radiocesium. The 240Pu/239Pu atom ratios (0.21-0.28) were significantly higher than terrestrial global fallout (0.182 ± 0.005), but still in agreement with pre-FDNPP accident baseline data for Pu in near coastal seawaters influenced by global fallout and long-range transport of Pu from the Pacific Proving Grounds.

2.
Sci Total Environ ; 461-462: 734-41, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23770554

ABSTRACT

In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 µBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores.


Subject(s)
Atmosphere/chemistry , Ice Cover/chemistry , Plutonium/analysis , Radiation Monitoring/methods , Radioactive Fallout/analysis , Uranium/analysis , Arctic Regions , Autoradiography , History, 20th Century , Mass Spectrometry , Radiation Monitoring/history , USSR
SELECTION OF CITATIONS
SEARCH DETAIL
...