Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 47(10): 1723-1730, 2020 10.
Article in English | MEDLINE | ID: mdl-32603499

ABSTRACT

Diminazene aceturate (DIZE) has been described as an angiotensin-converting enzyme 2 (ACE2) activator. We aimed to investigate DIZE effects on blood pressure (BP) of spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats. BP was recorded in awake and unrestrained rats 24 hours after femoral artery catheterization. DIZE (15 mg/kg, s.c.) produced a fast BP decrease only in SHR (P < .01). Pre-treatment with L-NAME (10 mg/kg, iv) did not change the hypotensive effect on systolic BP whereas mitigated the DIZE effect on diastolic BP (∆ Emax: -31 ± 5 DIZE vs -15 ± 1 mm Hg DIZE + L-NAME, P < .05). BP changes after DIZE remained unchanged after the treatment of rats with A-779 (50 ug/kg, iv), a Mas receptor blocker. Vasodilatation curves to DIZE (10-9 to 10-4  mol/L) in mesenteric arteries confirmed the NO-mediation on DIZE effects in SHR, as L-NAME (300 µmol/L) reduced the vascular sensitivity (∆EC50: -5.12 ± 0.09 CONTROL vs -4.66 ± 0.08 L-NAME, P < .05) and the magnitude of DIZE effect (area under the curve (AUC), 357.5 ± 8.2 DIZE vs 424.7 ± 11.6 L-NAME; P < .001), whereas A-779 (1 µmol/L) enhanced DIZE response (AUC, 357.5 ± 8.2 DIZE vs 309.8 ± 14.7 A-779, P < .05). Our findings indicate that DIZE acutely reduces the BP in SHR possibly by a mechanism other than Mas receptor activation. This effect seems to be mediated, at least partially, by NO.


Subject(s)
Diminazene/analogs & derivatives , Hypertension/chemically induced , Hypertension/physiopathology , Nitric Oxide/metabolism , Animals , Blood Pressure/drug effects , Diminazene/pharmacology , Hypertension/metabolism , Male , Rats
2.
Toxicon ; 185: 5-14, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32569848

ABSTRACT

Cardiovascular effects induced by snake venoms, in spite of having a crucial role in the outcome of the envenomation, have been less studied than other toxic activities displayed by these venoms. In this study we evaluated acute cardiovascular responses to Bothrops leucurus venom - Bl-V - both in vivo, in anesthetized rats, and in vitro, in isolated rat mesenteric resistance arteries. Bl-V (10-100 µg protein/kg) caused dose-dependent hypotension, followed by gradual recovery (2-20 min) to basal levels, and induced dose-dependent (1-20 µg/mL) vasodilation in pre-contracted arteries, what was more pronounced when the endothelium remained intact. These effects were partially counteracted by pre-treatment with indomethacin (cyclooxygenase inhibitor). Prior incubation of Bl-V with commercial pentavalent Bothrops antivenom also attenuated the cardiovascular effects induced by the venom, in spite of it not being among the venoms used for the development of the bothropic antivenom. Through an approach based on two chromatographic steps and mass spectrometry (MALDI-ToF and MALDI-ISD), a component with acute cardiovascular effects was isolated and identified as the basic phospholipase blD-PLA2, previously purified from the venom of B. leucurus. Taken together, our results show that, at low doses, the venom of B. leucurus induces transient, acute hypotension in anesthetized rats following systemic vasodilation in a dose-dependent way. In addition, we provide clear evidence of the involvement of the enzymatic activity of blD-PLA2 in this cardiovascular response, acting via the production of vasodilating prostanoids.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Phospholipases A2/metabolism , Animals , Hypotension/chemically induced , Rats , Snake Venoms
3.
Curr Pharm Des ; 26(30): 3684-3699, 2020.
Article in English | MEDLINE | ID: mdl-32250215

ABSTRACT

BACKGROUND: Punica granatum L. is an infructescence native of occidental Asia and Mediterranean Europe, popularly referred to as pomegranate. It has been used in ethnomedicine for several applications, including the treatment of obesity, inflammation, diabetes, and the regulation of blood lipid parameters. Thus, pomegranate has been linked to the treatment of cardiovascular diseases that have endothelial dysfunction as a common factor acting mainly against oxidative stress due to its high polyphenol content. Its biocomponents have antihypertensive, antiatherogenic, antihyperglycemic, and anti-inflammatory properties, which promote cardiovascular protection through the improvement of endothelial function. METHODS: Different electronic databases were searched in a non-systematic way to uncover the literature of interest. CONCLUSION: This review article presents updated information on the role of pomegranate in the context of endothelial dysfunction and cardiovascular diseases. We have shown that pomegranate, or rather its components (e.g., tannins, flavonoids, phytoestrogens, anthocyanins, alkaloids, etc.), have beneficial effects on the cardiovascular system, improving parameters such as oxidative stress and the enzymatic antioxidant system, reducing reactive oxygen species formation and acting in an anti-inflammatory way. Thus, this review may contribute to a better understanding of pomegranate's beneficial actions on endothelial function and possibly to the development of strategies associated with conventional treatments of cardiovascular diseases.


Subject(s)
Lythraceae , Pomegranate , Antioxidants/pharmacology , Asia , Europe , Fruit , Humans , Plant Extracts
4.
J Toxicol Environ Health A ; 79(21): 998-1007, 2016.
Article in English | MEDLINE | ID: mdl-27710705

ABSTRACT

Based on the antioxidant properties of pomegranate, this study was designed to investigate the effects of pomegranate peel extract on damage associated with hypertension and aging in a spontaneously hypertensive rat (SHR) model. The influence of pomegranate consumption was examined on systolic blood pressure (SBP), angiotensin-converting enzyme (ACE) coronary activity, oxidative stress, and vascular morphology. Four- or 28-wk-old SHR model rats were treated for 30 d, with terminal experimental animal age being 8 and 32 wk, respectively, with either pomegranate extract (SHR-PG) or filtered water (SHR). Data showed significant reduction in SBP and coronary ACE activity in both age groups. The levels of superoxide anion, a measure of oxidative stress, were significantly lower in animals in the SHR-PG group compared to SHR alone. Coronary morphology demonstrated total increases in vascular wall areas were in the SHR group, and pomegranate peel extract diminished this effect. Pomegranate peel extract consumption conferred protection against hypertension in the SHR model. This finding was demonstrated by marked reduction in coronary ACE activity, oxidative stress, and vascular remodelling. In addition, treatment was able to reduce SBP in both groups. Evidence indicates that the use of pomegranate peel extract may prove beneficial in alleviating coronary heart disease.


Subject(s)
Antioxidants/pharmacology , Hypertension/physiopathology , Lythraceae/chemistry , Oxidative Stress/drug effects , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/pharmacology , Vascular Remodeling , Animals , Female , Fruit/chemistry , Rats , Rats, Inbred SHR
5.
Cell Mol Life Sci ; 62(24): 3106-16, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16374585

ABSTRACT

Polyamines are small charged molecules essential for various cellular functions, but at high levels they are cytotoxic. Two yeast kinases, SKY1 and PTK2, have been demonstrated to regulate polyamine tolerance. Here we report the identification and characterization of additional genes involved in regulating polyamine tolerance: YGL007W, FES1 and AGP2. Deletion of YGL007W, an open reading frame located within the promoter of the membrane proton pump PMA1, decreased Pma1p expression. Deletion of FES1 or AGP2 resulted in reduced polyamine uptake. While high-affinity spermine uptake was practically absent in agp2Delta cells, fes1Delta cells displayed only reduced affinity towards spermine. Despite the reduced uptake, the resistant strains accumulated significant levels of polyamines and displayed increased ornithine decarboxylase activity, suggesting reduced polyamine sensing. Interestingly, fes1Delta cells were highly sensitive to salt ions, suggesting different underlying mechanisms. These results indicate that mechanisms leading to polyamine tolerance are complex, and involve components other than uptake.


Subject(s)
Amino Acid Transport Systems/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Open Reading Frames/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spermine/pharmacology , Symporters/metabolism , Amino Acid Transport Systems/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lithium Chloride/metabolism , Lithium Chloride/pharmacology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Spermine/metabolism , Spermine/pharmacokinetics , Symporters/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...