Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(39): 12004-12008, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28597958

ABSTRACT

DNA hydrogels are of great interest for a variety of biomedical applications owing to their biocompatibility and biodegradability but the advantages of DNA hydrogels have not been exploited yet because of their limited availability. Thus far, DNA hydrogels have been prepared from synthetically derived building blocks, and their production on large scale would be far too expensive. As an alternative, here the generation of DNA hydrogels from plasmid DNA is reported. Plasmid DNA can be prepared on large scale at reasonable costs by a fermentation process. The desired linear DNA building blocks are then obtained from the plasmid DNA by enzymatic digestion. Gel formation is carried out by covalent bond formation between individual building blocks via enzymatic ligation. The generation of pristine DNA hydrogels from plasmid DNA is thus presented for the first time. The viscoelastic properties of the hydrogels were studied by rheology, which confirmed that the gels have storage moduli G' of >100 Pa.


Subject(s)
Biotechnology , DNA/chemistry , Hydrogels/chemistry , Plasmids , Electrophoresis, Agar Gel , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Rheology
2.
RSC Adv ; 6(61): 56467-56474, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-28066548

ABSTRACT

The multi-ligand binding flavoprotein dodecin is reconstituted on top of flavin-terminated oligonucleotide monolayers. A detailed quartz crystal microbalance with a dissipation monitoring (QCM-D) study showing how the length and flexibility of the oligonucleotide tethers influence the stability and the viscoelastic properties of the resulting DNA-protein layers is presented. Relatively dense protein layers can be obtained, if the length of the tethers is in the same range as the diameter of dodecin. When significantly longer tethers are used, less dense layers are formed. When rather short tethers are used, the reaching area of individual tethers is too low to capture single apododecin molecules cooperatively, and the formation of stable and dense protein layers is not possible. On top of the DNA-dodecin layers additional flavin-DNA ligands may be captured to form sandwich-type DNA-protein-DNA layers. Differences in the binding and unbinding behavior of flavin-dsDNA and flavin-ssDNA ligands are measured by QCM-D and surface plasmon fluorescence spectroscopy (SPFS). Both type of ligands show relatively low kon values, which might be explained by the structural rigidity of the binding pockets allowing a ligand to enter only when it approaches precisely in the right orientation. Apparently apododecin-flavin binding follows Fischer's classic lock-and-key binding model.

SELECTION OF CITATIONS
SEARCH DETAIL
...