Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 166: 112467, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32805618

ABSTRACT

Nasal chondrocyte-derived engineered cartilage has been demonstrated to be safe and feasible for the treatment of focal cartilage lesions with promising preliminary evidences of efficacy. To ensure the quality of the products and processes, and to meet regulatory requirements, quality controls for identity, purity, and potency need to be developed. We investigated the use of Raman spectroscopy, a nondestructive analytical method that measures the chemical composition of samples, and statistical learning methods for the development of quality controls to quantitatively characterize the starting biopsy and final grafts. We provide a proof-of-concept to show how Raman spectroscopy can be used to identify the types of tissues found in a nasal septal biopsy, i.e., hyaline cartilage and perichondrium, for a novel tissue identity assay. The tissues could be classified with a sensitivity of 89% and specificity of 77%. We also show how clinically relevant and mature nasal chondrocyte-derived engineered cartilage can be assessed with Raman spectroscopy for the development of potency assays. The maturity of engineered grafts, based on the quantified ratio of glycosaminoglycans to DNA and histological score, could be accurately assessed (R2 = 0.78 and 0.89, respectively, between predicted and measured values). Our results demonstrate the potential of Raman spectroscopy for the development of characterization assays for regenerative therapies that could be integrated into a good manufacturing practice-compliant process.


Subject(s)
Biosensing Techniques , Spectrum Analysis, Raman , Cartilage , Chondrocytes , Tissue Engineering
2.
Biomaterials ; 32(11): 2878-84, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21288567

ABSTRACT

In natural tissues, the extracellular matrix composition, cell density and physiological properties are often non-homogeneous. Here we describe a model system, in which the distribution of cells throughout tissue engineering scaffolds after perfusion seeding can be influenced by the pore architecture of the scaffold. Two scaffold types, both with gyroid pore architectures, were designed and built by stereolithography: one with isotropic pore size (412 ± 13 µm) and porosity (62 ± 1%), and another with a gradient in pore size (250-500 µm) and porosity (35%-85%). Computational fluid flow modelling showed a uniform distribution of flow velocities and wall shear rates (15-24 s(-1)) for the isotropic architecture, and a gradient in the distribution of flow velocities and wall shear rates (12-38 s(-1)) for the other architecture. The distribution of cells throughout perfusion-seeded scaffolds was visualised by confocal microscopy. The highest densities of cells correlated with regions of the scaffolds where the pores were larger, and the fluid velocities and wall shear rates were the highest. Under the applied perfusion conditions, cell deposition is mainly determined by local wall shear stress, which, in turn, is strongly influenced by the architecture of the pore network of the scaffold.


Subject(s)
Tissue Scaffolds/chemistry , Cell Adhesion/physiology , Chondrocytes/cytology , Humans , Microscopy, Confocal , Porosity
3.
Biomaterials ; 32(2): 321-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20952054

ABSTRACT

In the bone marrow, specialized microenvironments, called niches, regulate hematopoietic stem cell (HSC) maintenance and function through a complex crosstalk between different cell types. Although in vivo studies have been instrumental to elucidate some of the mechanisms by which niches exert their function, the establishment of an in vitro model that recapitulates the fundamental interactions of the niche components in a controlled setting would be of great benefit. We have previously shown that freshly harvested bone marrow- or adipose tissue-derived cells can be cultured under perfusion within porous scaffolds, allowing the formation of an organized 3D stromal tissue, composed by mesenchymal and endothelial progenitors and able to support hematopoiesis. Here we describe 3D scaffold-based perfusion systems as potential models to reconstruct ex vivo the bone marrow stem cell niche. We discuss how several culture parameters, including scaffold properties, cellular makeup and molecular signals, can be varied and controlled to investigate the role of specific cues in affecting HSC fate. We then provide a perspective of how the system could be exploited to improve stem cell-based therapies and how the model can be extended toward the engineering of other specialized stromal niches.


Subject(s)
Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Stem Cell Niche/cytology , Tissue Scaffolds , Animals , Humans
4.
J Cell Mol Med ; 12(4): 1238-49, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18782188

ABSTRACT

Biological substitutes for autologous bone flaps could be generated by combining flap pre-fabrication and bone tissue engineering concepts. Here, we investigated the pattern of neotissue formation within large pre-fabricated engineered bone flaps in rabbits. Bone marrow stromal cells from 12 New Zealand White rabbits were expanded and uniformly seeded in porous hydroxyapatite scaffolds (tapered cylinders, 10-20 mm diameter, 30 mm height) using a perfusion bioreactor. Autologous cell-scaffold constructs were wrapped in a panniculus carnosus flap, covered by a semipermeable membrane and ectopically implanted. Histological analysis, substantiated by magnetic resonance imaging (MRI) and micro-computerized tomography scans, indicated three distinct zones: an outer one, including bone tissue; a middle zone, formed by fibrous connective tissue; and a central zone, essentially necrotic. The depths of connective tissue and of bone ingrowth were consistent at different construct diameters and significantly increased from respectively 3.1+/-0.7 mm and 1.0+/-0.4 mm at 8 weeks to 3.7+/-0.6 mm and 1.4+/-0.6 mm at 12 weeks. Bone formation was found at a maximum depth of 1.8 mm after 12 weeks. Our findings indicate the feasibility of ectopic pre-fabrication of large cell-based engineered bone flaps and prompt for the implementation of strategies to improve construct vascularization, in order to possibly accelerate bone formation towards the core of the grafts.


Subject(s)
Bone Substitutes/metabolism , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Animals , Bone Marrow Cells/cytology , Bone and Bones/cytology , Cells, Cultured , Ceramics , Connective Tissue , Implants, Experimental , Magnetic Resonance Imaging , Porosity , Rabbits , Stromal Cells/cytology , Time Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...