Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 51(5): 688-98, 2001 May.
Article in English | MEDLINE | ID: mdl-11355456

ABSTRACT

Analysis of Hg speciation in combustion flue gases is often accomplished in standardized sampling trains in which the sample is passed sequentially through a series of aqueous solutions to capture and separate oxidized Hg (Hg2+) and elemental Hg (Hg0). Such methods include the Ontario Hydro (OH) and the Alkaline Mercury Speciation (AMS) methods, which were investigated in the laboratory to determine whether the presence of Cl2 and other common flue gas species can bias the partitioning of Hg0 to front impingers intended to isolate Hg2+ species. Using only a single impinger to represent the front three impingers for each method, it was found that as little as 1-ppm Cl2 in a simulated flue gas mixture led to a bias of approximately 10-20% of Hg0 misreported as Hg2+ for both the OH and the AMS methods. Experiments using 100-ppm Cl2 led to a similar bias in the OH method, but to a 30-60% bias in the AMS method. These false readings are shown to be due to liquid-phase chemistry in the impinger solutions, and not necessarily to the gas-phase reactions between Cl2 and Hg as previously proposed. The pertinent solution chemistry causing the interference involves the hypochlorite ion (OCl-), which oxidizes Hg0 to soluble Hg2+. Addition of sodium thiosulfate (Na2S2O3) to the front impinger solutions eliminates this false positive measurement of Hg2+ by selectively reacting with the OCl- ion. In general, the presence of SO2 also mitigates this interference in the same way, and so this bias is not likely to be a factor for Hg speciation measurements from actual coal combustion flue gases. It might, however, be a problem for those few combustor flue gas measurements and research studies where Cl2 is present without appreciable amounts of SO2.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Mercury/chemistry , Incineration , Mercury/analysis , Power Plants , Refuse Disposal
3.
J Air Waste Manag Assoc ; 50(8): 1532-44, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11002612

ABSTRACT

U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impaction as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments. Experimental results on the mass and compositions of particles between 0.03 and > 20 microns in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-micron aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large. Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM < 2.5 microns without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (approximately 0.1 micron). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM < 2.5 microns and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles.


Subject(s)
Air Pollution/analysis , Coal , Fuel Oils , Biological Availability , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...