Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(23): 5466-5474, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37288806

ABSTRACT

Perovskite quantum dots (QDs) with high room-temperature luminescence efficiency have been applied in single-photon sources. While the optical properties of large, weakly confined perovskite nanocrystals have been extensively explored at the single-particle level, few studies have focused on single-perovskite QDs with strong quantum confinement. This is mainly due to their poor surface chemical stability. Here we demonstrate that strongly confined CsPbBr3 perovskite QDs (SCPQDs) embedded in a phenethylammonium bromide matrix exhibit a well-passivated surface and improved photostability under intense photoexcitation. We find that in our SCPQDs, photoluminescence blinking is suppressed at moderate excitation intensities, and increasing the excitation rates leads to weak photoluminescence intensity fluctuations accompanied by an unusual spectral blue-shift. We attribute this to a biexciton-like Auger interaction between excitons and trapped excitons formed by surface lattice elastic distortions. This hypothesis is corroborated by the unique repulsive biexciton interaction observed in the SCPQDs.

2.
Biosensors (Basel) ; 12(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448310

ABSTRACT

This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral data processing approach based on machine learning methods proved capable of presenting the cell structure and distinguishing cancer cells from non-cancer muscle cells without compromising full-spectrum information. This study discovered that biomolecular information-nucleic acids, proteins, and lipids-from cells could be retrieved efficiently from low-quality hyperspectral Raman datasets and then employed for cell line differentiation.


Subject(s)
Machine Learning , Neoplasms , Algorithms , Animals , Cell Differentiation , Mice , Proteins , Spectrum Analysis, Raman
3.
Materials (Basel) ; 15(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35407949

ABSTRACT

This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.

4.
J Chem Phys ; 156(12): 124104, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35364897

ABSTRACT

Following the formulation of cavity quantum-electrodynamical time-dependent density functional theory (cQED-TDDFT) models [Flick et al., ACS Photonics 6, 2757-2778 (2019) and Yang et al., J. Chem. Phys. 155, 064107 (2021)], here, we report the derivation and implementation of the analytic energy gradient for polaritonic states of a single photochrome within the cQED-TDDFT models. Such gradient evaluation is also applicable to a complex of explicitly specified photochromes or, with proper scaling, a set of parallel-oriented, identical-geometry, and non-interacting molecules in the microcavity.

5.
J Chem Phys ; 155(6): 064107, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34391367

ABSTRACT

Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and co-workers [Flick et al., ACS Photonics 6, 2757-2778 (2019)], we propose an implementation that uses dimensionless amplitudes for describing the photonic contributions to QED-TDDFT electron-photon eigenstates. This leads to a Hermitian QED-TDDFT coupling matrix that is expected to facilitate the future development of analytic derivatives. Through a Gaussian atomic basis implementation of the QED-TDDFT method, we examined the effect of dipole self-energy, rotating-wave approximation, and the Tamm-Dancoff approximation on the QED-TDDFT eigenstates of model compounds (ethene, formaldehyde, and benzaldehyde) in an optical cavity. We highlight, in the strong coupling regime, the role of higher-energy and off-resonance excited states with large transition dipole moments in the direction of the photonic field, which are automatically accounted for in our QED-TDDFT calculations and might substantially affect the energies and compositions of polaritons associated with lower-energy electronic states.

6.
RSC Adv ; 9(72): 42516-42523, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-35542874

ABSTRACT

A mid-wave infrared (MWIR) uncooled PbSe-QDs/CdS p-n heterojunction photodiode has been fabricated using a wet-chemical synthesis route. This offers a low-cost alternative to traditional monocrystalline photodiodes relying on molecular beam epitaxy (MBE) technology. It was demonstrated that the post-annealing is critical to tailor the photoresponse wavelength and to improve the performance of photodiodes. After annealing at 673 K in air for 0.5 h, the ligand-free PbSe-QDs/CdS photodiode exhibits a MWIR spectral photoresponse with a cutoff wavelength of 4.2 µm at room temperature. Under zero-bias photovoltaic mode, the peak responsivity and specific detectivity at room temperature are 0.36 ± 0.04 A W-1 and (8.5 ± 1) ×108 cm Hz1/2 W-1, respectively. Temperature-dependent spectral response shows an abnormal intensity variation at temperatures lower than 200 K. This phenomenon is attributed to the band alignment transition from type II to type I, resulting from the positive temperature coefficient of PbSe. In addition, it was proved that In doped CdSe (CdSe:In) films could be used as a promising new candidate of infrared transparent conductive electrodes, paving the way for monolithic integration of uncooled low-cost MWIR photodiodes on Si readout circuitry.

SELECTION OF CITATIONS
SEARCH DETAIL
...