Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Appl Microbiol ; 124: 119-146, 2023.
Article in English | MEDLINE | ID: mdl-37597946

ABSTRACT

Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.


Subject(s)
Carbon , Metabolic Engineering , Catalysis , Greenhouse Effect , Methane
2.
JASA Express Lett ; 3(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37477583

ABSTRACT

This study explores the discrimination of Mandarin non-sibilant fricatives by bilingual speakers (N = 40) of Quanzhou Southern Min (L1) and Mandarin (L2) in different phonological contexts, including rounded vowels and the glide [w]. The results of the ABX discrimination task indicate significant contextual effects of the following sound, in line with predictions based on the Perceptual Assimilation model (PAM) [Best (1995). J. Phon. 20(3), 305-330]. Additionally, the observed result could not be fully explained by the acoustic distance between stimuli, and discrimination ability was better for speakers with more exposure to and use of Mandarin.


Subject(s)
Speech Perception , Phonetics , Speech Acoustics , Acoustics , Sound
3.
Bioresour Technol ; 374: 128762, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36813047

ABSTRACT

Utilization of all major components of lignocellulose is essential for biomass biorefining. Glucose, xylose, and lignin-derived aromatics can be generated from cellulose, hemicellulose, and lignin of lignocellulose degradation through pretreatment and hydrolysis. In present work, Cupriavidus necator H16 was engineered to utilize glucose, xylose, p-coumaric acid, and ferulic acid simultaneously by multi-step genetic engineering. Firstly, genetic modification and adaptive laboratory evolution were performed to promote glucose transmembrane transport and metabolism. Xylose metabolism was then engineered by integrating genes xylAB (xylose isomerase and xylulokinase) and xylE (proton-coupled symporter) in the locus of ldh (lactate dehydrogenase) and ackA (acetate kinase) on the genome, respectively. Thirdly, p-coumaric acid and ferulic acid metabolism was achieved by constructing an exogenous CoA-dependent non-ß-oxidation pathway. Using corn stover hydrolysates as carbon sources, the resulting engineered strain Reh06 simultaneously converted all components of glucose, xylose, p-coumaric acid, and ferulic acid to produce 11.51 g/L polyhydroxybutyrate.


Subject(s)
Cupriavidus necator , Lignin , Lignin/metabolism , Xylose/metabolism , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Fermentation , Glucose/metabolism
4.
Appl Environ Microbiol ; 88(2): e0145821, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34731058

ABSTRACT

Cupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO2. Low-oxygen stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture. The optimum growth and PHB synthesis of C. necator H16 cannot be achieved simultaneously, which restricts PHB production. The present study was initiated to address the issue through comparative transcriptome and gene function analysis. First, the comparative transcriptome of C. necator H16 chemoautotrophically cultured under low-oxygen stress and nonstress conditions was studied. Three types of genes were discovered to have differential levels of transcription: those involving PHB enzymatic synthesis, PHB granulation, and regulators. Under low-oxygen stress conditions, acetoacetyl-coenzyme A (CoA) reductase gene phaB2, PHB synthase gene phaC2, phasins genes phaP1 and phaP2, and regulator genes uspA and rpoN were upregulated 3.0-, 2.5-, 1.8-, 2.7-, 3.5-, and 1.6-fold, respectively. Second, the functions of upregulated genes and their applications in PHB synthesis were further studied. It was found that the overexpression of phaP1, phaP2, uspA, and rpoN can induce PHB synthesis under nonstress conditions, while phaB2 and phaC2 have no significant effect. Under the optimum conditions, the PHB percentage content in C. necator H16 was increased by 37.2%, 28.4%, 15.8%, and 41.0%, respectively, with overexpression of phaP1, phaP2, uspA, and rpoN, and the corresponding PHB production increased by 49.8%, 42.9%, 47.0%, and 77.5%, respectively, under nonstress chemoautotrophic conditions. Similar promotion by phaP1, phaP2, uspA, and rpoN was observed in heterotrophically cultured C. necator H16. The PHB percentage content and PHB production were increased by 54.4% and 103.1%, respectively, with the overexpression of rpoN under nonstress heterotrophic conditions. IMPORTANCE Microbial fixation of CO2 is an effective way to reduce greenhouse gases. Some microbes, such as C. necator H16, usually accumulate PHB when they grow under stress. Low-oxygen stress can induce PHB synthesis when C. necator H16 is autotrophically cultured with CO2, H2, and O2, while under stress, growth is restricted, and total PHB yield is reduced. Achieving the optimal bacterial growth and PHB synthesis at the same time is an ideal condition for transforming CO2 into PHB by C. necator H16. The present study was initiated to clarify the molecular basis of low-oxygen stress promoting PHB accumulation and to realize the optimal PHB production by C. necator H16. Genes upregulated under nonstress conditions were identified through comparative transcriptome analysis and overexpression of phasin, and regulator genes were demonstrated to promote PHB synthesis in C. necator H16.


Subject(s)
Cupriavidus necator , Bacterial Proteins/genetics , Cupriavidus necator/genetics , Genes, Regulator , Hydroxybutyrates , Plant Lectins , Polyesters
5.
Biotechnol Biofuels ; 14(1): 84, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33812391

ABSTRACT

Lignin, the most abundant renewable aromatic compound in nature, is an excellent feedstock for value-added bioproducts manufacturing; while the intrinsic heterogeneity and recalcitrance of which hindered the efficient lignin biorefinery and utilization. Compared with chemical processing, bioprocessing with microbial and enzymatic catalysis is a clean and efficient method for lignin depolymerization and conversion. Generally, lignin bioprocessing involves lignin decomposition to lignin-based aromatics via extracellular microbial enzymes and further converted to value-added bioproducts through microbial metabolism. In the review, the most recent advances in degradation and conversion of lignin to value-added bioproducts catalyzed by microbes and enzymes were summarized. The lignin-degrading microorganisms of white-rot fungi, brown-rot fungi, soft-rot fungi, and bacteria under aerobic and anaerobic conditions were comparatively analyzed. The catalytic metabolism of the microbial lignin-degrading enzymes of laccase, lignin peroxidase, manganese peroxidase, biphenyl bond cleavage enzyme, versatile peroxidase, and ß-etherize was discussed. The microbial metabolic process of H-lignin, G-lignin, S-lignin based derivatives, protocatechuic acid, and catechol was reviewed. Lignin was depolymerized to lignin-derived aromatic compounds by the secreted enzymes of fungi and bacteria, and the aromatics were converted to value-added compounds through microbial catalysis and metabolic engineering. The review also proposes new insights for future work to overcome the recalcitrance of lignin and convert it to value-added bioproducts by microbial and enzymatic catalysis.

6.
Metab Eng ; 61: 11-23, 2020 09.
Article in English | MEDLINE | ID: mdl-32348842

ABSTRACT

The oxygen-limiting condition promotes the accumulation of ployhydroxybutyrate (PHB) in C. necator H16, while the growth of which is restricted. Under autotrophic culture using carbon dioxide, hydrogen, and oxygen as substrates, the oxygen concentration below 6.9% (v/v) in the mixture is considered as a safe condition. It also expected to achieve cell rapid growth and large accumulation of PHB simultaneously under the oxygen-limiting condition in C. necator H16. In this study, a metabolically engineered strain capable of both rapid growth and large accumulation of PHB under oxygen-limiting conditions was constructed based on the transcriptomic analysis. In the comparative transcriptomic analysis, the genes related to energy-generating of C. necator H16 at autotrophic culture were downregulated under oxygen-limiting conditions (3%, v/v). Besides, the genes related to the key intermediates (pyruvate and acetyl-CoA) metabolism in PHB biosynthetic pathway were analyzed. Most of which were downregulated, except the genes ldh, iclA, and ackA2 respectively encoding L-lactate dehydrogenase, isocitrate lyase, and acetate kinase were upregulated under oxygen-limiting conditions (3%, v/v). The Vitreoscilla hemoglobin (VHb) has the ability to promote aerobic metabolism and energy generation. To promote the bacterium growth and improve the energy generation in C. necator H16 under oxygen-limiting conditions, the VHb gene was introduced into C. necator H16 with the optimized promoter PphaC1-j5. Moreover, VHb was localized to the periplasmic space of the bacterium by the traction of membrane-bound hydrogenase (MBH) signal peptide. By optimizing the knockout of different genes, it was found that knockout of ldh can improve PHB production and reduce the by-products. Finally, a recombinant strain Reh01 (p2M-pj-v) was constructed by heterologous expression of vgb and ldh knockout in C. necator H16. Compared with the control (Reh (p2)) under oxygen-limiting conditions (3%, v/v), the dry cell weight (DCW), PHB content, and PHB production of Reh01 (p2M-pj-v) increased by 31.0%, 30.9%, and 71.5%, respectively. From the perspectives of transcriptome and metabolic engineering, the work provides new ideas to achieve rapid cell growth and large PHB accumulation in C. necator under oxygen-limiting and autotrophic conditions.


Subject(s)
Bacterial Proteins , Chemoautotrophic Growth , Cupriavidus necator , Gene Expression Regulation, Bacterial , Metabolic Engineering , Polyhydroxyalkanoates/biosynthesis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Polyhydroxyalkanoates/genetics
7.
Biomolecules ; 10(2)2020 02 13.
Article in English | MEDLINE | ID: mdl-32070027

ABSTRACT

A novel quorum sensing (QS) system was discovered in Serratia odorifera, the symbiotic bacterium of Hypsizygus marmoreus. This system uses cyclo(Pro-Phe), cyclo(Pro-Tyr), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Tyr-Leu), and cyclo(Tyr-Ile) as autoinducers. This discovery is the first attempt to characterize cyclic dipeptides as QS signaling molecules in S. odorifera and improves the classical QS theory. Significantly, except for cyclo(Tyr-Leu), these QS autoinducers can increase the transcription level of lignin-degrading enzyme genes of H.marmoreus. The cyclo(Pro-Phe) can increase the activity of extracellular laccase (1.32-fold) and manganese peroxidase (20%), which may explain why QS potentially regulates the hyphal growth, primordium formation, and fruit body development of H. marmoreus. Furthermore, it was demonstrated that the cyclo(Tyr-Ile) biosynthesis in S. odorifera was catalyzed by the nonribosomal peptide synthetase (NRPS). This study supports exploring the growth and development of H.marmoreus promoted by its symbiotic bacteria at QS signal transduction level.


Subject(s)
Agaricales/metabolism , Quorum Sensing/physiology , Serratia/metabolism , Dipeptides
8.
3 Biotech ; 9(10): 350, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31501751

ABSTRACT

A novel polyvinyl alcohol (PVA)-degrading strain Bacillus cereus RA23 was isolated from an oil sludge sample and environmental factors affecting its PVA degradation efficiency were optimized in detail. Inorganic nitrogen source, ammonium chloride (NH4Cl), was found to be the best nitrogen source and enhanced the PVA degradation rate greatly. The optimal medium for PVA biodegradation consisted of (g/L) PVA 1, NH4Cl 1, K2HPO4 1.6, MgSO4·7H2O 0.05, FeSO4·6H2O 0.02, CaCl2 0.05, NaCl 0.02. The optimal temperature and pH for PVA biodegradation by strain RA23 was 28 °C and 7.0, respectively, and 85% of 0.1% PVA was degraded after 5 days under these conditions. FTIR studies showed that the carboxylic acids (possibly including aldehyde or ketone) could be the intermediate product of PVA biodegradation. The investigation of strain RA23 for PVA degradation will provide important information to facilitate the removal of wastewater pollution in industrial zones.

9.
Enzyme Microb Technol ; 112: 52-58, 2018 May.
Article in English | MEDLINE | ID: mdl-29499780

ABSTRACT

Phenylalanine ammonia-lyase (PAL) gene plays an important role in the synthesis of flavones, lignin, and other bioactive compounds in living organisms. Inonotus baumii, the only known flavone-producing filamentous fungus, is of great importance in the investigation of flavone metabolic pathways. To study the function of PAL enzyme in I. baumii flavone synthesis, a full-length cDNA of pal gene was cloned from I. baumii using DOP-PCR and RACE-PCR. The 2502-bp PAL coding region encodes an 833 amino acid protein with an approximate MW of 88.2kDa. Three introns and four exons are present in the DNA sequence of IbPAL. Amino acid sequence alignment showed that IbPAL shares 76% similarity with PALs of Inonotus fungi. The three-dimensional structure of IbPAL showed that it is composed of an MIO domain, a core domain and an inserted shielding domain. On this basis, the IbPAL was expressed and purified using the prokaryotic expression vector pSMART-V with a 6xHis-tag in Escherichia coli, and its enzymatic activity was subsequently detected. Our results will aid in understanding the enzymatic properties of PAL and further confirm the mechanism of flavone synthesis in I. baumii.


Subject(s)
Basidiomycota/enzymology , Basidiomycota/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Amino Acid Sequence , Cloning, Molecular , Computational Biology , Flavones/biosynthesis , Fungal Proteins/chemistry , Genes, Fungal , Kinetics , Models, Molecular , Phenylalanine Ammonia-Lyase/chemistry , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
10.
Environ Technol ; 39(16): 2056-2061, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28669293

ABSTRACT

In this study, polyvinyl alcohol (PVA)-degrading bacteria were screened from oil sludge using PVA as a sole source of carbon in the culture medium. A novel strain, SA21, was obtained and identified as a member of the Stenotrophomonas genus based on the analysis of a partial 16S rDNA nucleotide sequence, morphological and biochemical characteristics, and phylogenetic analysis. This Stenotrophomonas isolate had not previously been reported as a PVA-degrading bacterium. Stenotrophomonas sp. strain SA21 degraded 90% of the PVA present in the culture medium after 4 days. The effect of nitrogen sources on the production of PVA-degrading enzyme involved in the biodegradation process was significant, and the enzymatic activity reached 82 U/ml when ammonium nitrate or urea was used in the optimized medium. The information obtained in this study will provide a foundation for improving industrial wastewater treatment. ABBREVIATIONS: DCW: dry cell weight; FTIR: Fourier Transform Infrared Spectroscopy; NCBI: National Center for Biotechnology Information; PCR: polymerase chain reaction; PVA: polyvinyl alcohol; SEM: scanning electron microscope.


Subject(s)
Polyvinyl Alcohol/metabolism , Stenotrophomonas , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , DNA, Ribosomal , Phylogeny
11.
Food Chem ; 230: 350-353, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28407921

ABSTRACT

This study aims to enhance the accumulation of pleuromutilin by Pleurotus mutilus and to analyze the molecular structure of pleuromutilin. The results showed that a novel three-stage DO control strategy (60% DO, 1-3d; 45% DO, 4-6d; 30% DO, 7-9d) was very effective for improving the pleuromutilin accumulation and the highest production reached 12g/L, a 4-fold increase over a constant DO strategy. Furthermore, the flow behavior of fermentation broth appeared Newtonian with a maximum µap of 3.9×10-3Pa·s. Meanwhile the molecular formula (C22H34O5), molecular weight (378.5) and structural formula of pleuromutilin were concluded based on spectroscopy and element assay. The main components were hydroxyl, methyl, methylene, carbonyl, carboxyl, and polycyclic hydrocarbon. This work demonstrated that DO strategy was suitable for scalable production of pleuromutilin, which makes pleuromutilin more affordable as materials in food.


Subject(s)
Pleurotus/chemistry , Diterpenes/chemistry , Molecular Structure , Polycyclic Compounds , Pleuromutilins
12.
Sci Rep ; 6: 39637, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000767

ABSTRACT

An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/ml to 6.4 mg/m for several microorganisms, including Escherichia coli, Chromobacterium violaceum CV026, Pseudomonas aeruginosa PA01, Staphylococcus aureus, and Candida albicans. Additionally, sub-MICs of cyclo(Trp-Ser) decreased the QS-regulated violacein production in C. violaceum CV026 by 67%. Furthermore, cyclo(Trp-Ser) can decrease QS-regulated pyocyanin production, elastase activity and biofilm formation in P. aeruginosa PA01 by 65%, 40% and 59.9%, respectively. Molecular docking results revealed that cyclo(Trp-Ser) binds to CviR receptor more rigidly than C6HSL with lower docking energy -8.68 kcal/mol, while with higher binding energy of -8.40 kcal/mol than 3-oxo-C12HSL in LasR receptor. Molecular dynamics simulation suggested that cyclo(Trp-Ser) is more easy to bind to CviR receptor than natural signaling molecule, but opposite in LasR receptor. These results suggest that cyclo(Trp-Ser) can be used as a potential inhibitor to control QS systems of C. violaceum and P. aeruginosa and provide increased the understanding of molecular mechanism that influences QS-regulated behaviors.


Subject(s)
Diketopiperazines/pharmacology , Gammaproteobacteria/chemistry , Quorum Sensing/drug effects , Acetates/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Biofilms/drug effects , Biological Assay , Candida albicans/drug effects , Chromobacterium/drug effects , Escherichia coli/drug effects , Fermentation , Indoles/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Pseudomonas aeruginosa/drug effects , Pyocyanine/chemistry , Staphylococcus aureus/drug effects , Virulence Factors/metabolism
13.
Arch Microbiol ; 198(6): 585-90, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27020680

ABSTRACT

Many bacterial cells are known to regulate their cooperative behaviors and physiological processes through a molecular mechanism called quorum sensing. Quorum sensing in Serratia marcescens JG is mediated by the synthesis of autoinducer 2 (AI-2) which is a furanosyl borate diester. In this study, the response of quorum sensing in S. marcescens JG to environment changes such as the initial pH, carbon sources and boracic acid was investigated by a bioreporter and real-time PCR analysis. The results show that glucose can affect AI-2 synthesis to the greatest extent, and 2.0 % glucose can stimulate S. marcescens JG to produce more AI-2, with a 3.5-fold increase in activity compared with control culture. Furthermore, the response of quorum sensing to changes in glucose concentration was performed by changing the amount of luxS RNA transcripts. A maximum of luxS transcription appeared during the exponential growth phase when the glucose concentration was 20.0 g/L. AI-2 production was also slightly impacted by the low initial pH. It is significant for us that the addition of boracic acid at microdosage (0.1-0.2 g/L) can also induce AI-2 synthesis, which probably demonstrated the feasible fact that the 4,5-dihydroxy-2, 3-pentanedione cyclizes by the addition of borate and the loss of water, is hydrated and is converted to the final AI-2 in S. marcescens JG.


Subject(s)
Bacterial Proteins/genetics , Carbon-Sulfur Lyases/genetics , Gene Expression Regulation, Bacterial , Homoserine/analogs & derivatives , Lactones/metabolism , Quorum Sensing/genetics , Serratia marcescens/metabolism , Environment , Homoserine/biosynthesis , Homoserine/metabolism , RNA, Messenger/biosynthesis , Real-Time Polymerase Chain Reaction , Serratia marcescens/genetics , Serratia marcescens/growth & development , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...