Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
2.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620034

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , Swine , Farnesyltranstransferase/metabolism , Viral Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction
3.
J Biol Chem ; 300(6): 107307, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657868

ABSTRACT

African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.

4.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669242

ABSTRACT

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Subject(s)
Apoptosis , Herpesvirus 1, Suid , Mitochondria , Pseudorabies , Viral Proteins , Animals , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/genetics , Mice , Mitochondria/metabolism , Mitochondria/virology , Pseudorabies/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Herpesviridae/pathogenicity , Herpesviridae/genetics , Virus Replication/physiology , Humans , Mice, Inbred BALB C , Virulence
5.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
6.
Front Immunol ; 15: 1339510, 2024.
Article in English | MEDLINE | ID: mdl-38449860

ABSTRACT

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly mortal and hemorrhagic infectious disease in pigs. Previous studies have indicated that ASFV modulates interferon (IFN) production. In this study, we demonstrated that ASFV pA151R negatively regulated type I IFN production. Ectopic expression of pA151R dramatically inhibited K63-linked polyubiquitination and Ser172 phosphorylation of TANK-binding kinase 1 (TBK1). Mechanically, we demonstrated that E3 ligase TNF receptor-associated factor 6 (TRAF6) participated in the ubiquitination of TBK1 in cGAS-STING signaling pathway. We showed that pA151R interacted with TRAF6 and degraded it through apoptosis pathway, leading to the disruption of TBK1 and TRAF6 interaction. Moreover, we clarified that the amino acids H102, C109, C132, and C135 in pA151R were crucial for pA151R to inhibit type I interferon production. In addition, we verified that overexpression of pA151R facilitated DNA virus Herpes simplex virus 1 (HSV-1) replication by inhibiting IFN-ß production. Importantly, knockdown of pA151R inhibited ASFV replication and enhanced IFN-ß production in porcine alveolar macrophages (PAMs). Our findings will help understand how ASFV escapes host antiviral immune responses and develop effective ASFV vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Swine , Ubiquitin-Protein Ligases , TNF Receptor-Associated Factor 6 , Ubiquitination
7.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353534

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/metabolism , Interferon Type I/metabolism , Signal Transduction/physiology , Swine , Vaccines/metabolism , Virus Replication
8.
Virology ; 593: 110014, 2024 05.
Article in English | MEDLINE | ID: mdl-38401340

ABSTRACT

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.


Subject(s)
African Swine Fever Virus , African Swine Fever , Pyridines , Thiosemicarbazones , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , African Swine Fever/prevention & control , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cytarabine/metabolism , Cytarabine/pharmacology , Virus Replication
9.
J Virol ; 97(10): e0070423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768081

ABSTRACT

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Subject(s)
African Swine Fever Virus , Gene Deletion , Genes, Viral , Vaccines, Attenuated , Viral Vaccines , Animals , African Swine Fever/immunology , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever Virus/classification , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Sus scrofa/virology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence , Virus Replication , Genes, Viral/genetics
10.
J Virol ; 97(7): e0061623, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37382521

ABSTRACT

African swine fever (ASF) is an acute and hemorrhagic infectious disease caused by African swine fever virus (ASFV), which is listed as an animal epidemic disease that must be reported by The World Organization for Animal Health and that causes serious economic losses to China and even the whole world. Currently, the entry mechanism of ASFV is not fully understood. Especially in the early stages of virus entry, the host factors required for ASFV entry have not yet been identified and characterized. In this study, we demonstrated that ASFV externalized phosphatidylserine (PS) on the envelope functioned as viral apoptotic mimicry, which interacts with AXL, a tyrosine kinase receptor, to mediate ASFV entry into porcine alveolar macrophages (PAMs). We found that AXL was the most pronounced phosphatidylserine receptor (PSR) affecting ASFV entry in PAMs by RNA interference screening. Knockout AXL gene expression remarkably decreased ASFV internalization and replication in MA104 cells. Furthermore, the antibody against AXL extracellular domains effectively inhibited the ASFV entry. Consistent with these results, the deletion of the intracellular kinase domain of AXL and the treatment of the AXL inhibitor, R428, significantly inhibited the internalization of ASFV. Mechanistically, AXL facilitated the internalization of ASFV virions via macropinocytosis. Collectively, we provide evidence that AXL is a coreceptor for ASFV entry into PAMs, which expands our knowledge of ASFV entry and provides a theoretical basis for identifying new antiviral targets. IMPORTANCE African swine fever (ASF) is a highly contagious infectious disease caused by the ASF virus (ASFV), with a mortality rate of up to 100%. ASFV has caused huge economic losses to pig farming worldwide. Specific cellular surface receptors are considered crucial determinants of ASFV tropism. However, the host factors required for ASFV entry have not yet been identified, and the molecular mechanism of its entry remains unclear. Here, we found that ASFV utilized phosphatidylserine (PS) on the surface of virions to masquerade as apoptotic mimicry and facilitated virus entry by interacting with host factor AXL. We found that knockout of AXL remarkably decreased ASFV internalization and replication. The antibody against AXL extracellular domains and AXL inhibitor R428 significantly inhibited the internalization of ASFV via macropinocytosis. The current work deepens our understanding of ASFV entry and provides clues for the development of antiviral drugs to control ASFV infection.


Subject(s)
African Swine Fever , Axl Receptor Tyrosine Kinase , Host Microbial Interactions , Virus Internalization , Animals , African Swine Fever/virology , African Swine Fever Virus/genetics , Swine , Axl Receptor Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase/metabolism , Macrophages, Alveolar/virology , Gene Knockout Techniques , Cell Line , Viral Envelope/metabolism , Virus Attachment , Protein Domains
11.
J Virol ; 97(9): e0057723, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37199611

ABSTRACT

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease in domestic pigs and wild boars. Domestic pigs infected with virulent African swine fever virus (ASFV) isolates have a high mortality, approaching 100%. Identification of ASFV genes related to virulence/pathogenicity and deletion of them are considered to be key steps in the development of live attenuated vaccines, because the ability of ASFV to escape host innate immune responses is related to viral pathogenicity. However, the relationship between the host antiviral innate immune responses and the pathogenic genes of ASFV has not been fully understood. In this study, the ASFV H240R protein (pH240R), a capsid protein of ASFV, was found to inhibit type I interferon (IFN) production. Mechanistically, pH240R interacted with the N-terminal transmembrane domain of stimulator of interferon genes (STING) and inhibited its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Additionally, pH240R inhibited the phosphorylation of interferon regulatory factor 3 (IRF3) and TANK binding kinase 1 (TBK1), leading to reduced production of type I IFN. Consistent with these results, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more type I IFN than infection with its parental strain, ASFV HLJ/18. We also found that pH240R may enhance viral replication via inhibition of type I IFN production and the antiviral effect of interferon alpha (IFN-α). Taken together, our findings provide a new explanation for the reduction of ASFV's replication ability by knockout of the H240R gene and a clue for the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease with a high mortality, approaching 100% in domestic pigs. However, the relationship between viral pathogenicity and immune evasion of ASFV is not fully understood, which limits the development of safe and effective ASF vaccines, specifically, live attenuated vaccines. In this study, we found that pH240R, as a potent antagonist, inhibited type I IFN production by targeting STING and inhibiting its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Furthermore, we also found that deletion of the H240R gene reduced viral pathogenicity by enhancing type I IFN production, which decreases ASFV replication. Taken together, our findings provide a clue for the development of an ASFV live attenuated vaccine via deleting the H240R gene.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Viral Proteins , Animals , African Swine Fever/immunology , Interferon Type I/immunology , Sus scrofa , Swine , Vaccines, Attenuated
12.
Vet Microbiol ; 282: 109767, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141805

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious porcine pathogen that causes serious economic losses to the world swine industry. The inhibitor kappa B kinase ß (IKKß), a catalytic subunit of the IKK complex, plays multiple roles in regulating the nuclear transcription factor kappa B (NF-κB) activity and a variety of cytokines transcription involved in immune responses. Here, we reported that the nonstructural protein 4 (Nsp4) of PRRSV cleaved IKKß at the E378 site to inhibit the activation of NF-κB signaling pathway. Additionally, we clearly showed that cleavage of IKKß by PRRSV Nsp4 depends on the 3 C-like serine protease activity of Nsp4 because the catalytically inactivate mutants of Nsp4 lost the function to cleave IKKß. Furthermore, we found that hydrophobic patch at the KD-ULD junction of IKKß could be disrupted by PRRSV Nsp4 via the cleavage of the E378 site, resulting in disruption of NF-κB activity. Of note, the two cleavage fragments of IKKß lose their function to phosphorylate IκBα and activate NF-κB signaling pathway. Our findings provide a clue to better understand the pathogenic mechanism of PRRSV involved in PRRSV evasion of host antiviral innate immune responses.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Cell Line , Signal Transduction
13.
Emerg Microbes Infect ; 12(2): 2220575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37254454

ABSTRACT

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with high morbidity and mortality in domestic pigs and wild boars. The disease has become a global threat to the pig production industry and has caused enormous economic losses in many countries in recent years. However, the molecular mechanism underlying ASF virus (ASFV) entry of the host cells is not fully understood, which restricts the development of vaccines and antiviral-drugs of ASFV. In this study, we found that the host protein CD1d acts as a host factor, which mediates ASFV entry into the host cells. As the main capsid protein on the surface of ASFV virions, p72 can mediate viral entry. Using IP-MS assay, CD1d was identified as a binding partner of p72 on surface of ASFV virions. Knockdown of CD1d expression and blocking the cells with anti-pCD1d antibody, or incubating ASFV virions with soluble CD1d protein could significantly inhibit ASFV infection. CD1d is located on the membrane surface of primary porcine alveolar macrophages (PAMs) and mediates the virus entry via binding to p72. CD1d knockout or CD1d knockdown assay showed that CD1d could facilitate ASFV virions internalization via clathrin-mediated endocytosis (CME). Furthermore, CD1d interacts with EPS15 to mediate ASFV entry via clathrin-mediated endocytosis. Overall, our findings revealed that CD1d is a novel host-entry factor involved in ASFV internalization via the EPS15-clathrin endocytosis axis and a potential target for antiviral intervention.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Endocytosis , Sus scrofa , Clathrin/metabolism
14.
J Biol Chem ; 299(7): 104844, 2023 07.
Article in English | MEDLINE | ID: mdl-37209818

ABSTRACT

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.


Subject(s)
African Swine Fever Virus , Stress Granules , Viral Proteins , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/enzymology , African Swine Fever Virus/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Stress Granules/metabolism , Swine , Virus Replication/physiology , Chlorocebus aethiops , Humans , HEK293 Cells , Cells, Cultured , Macrophages, Alveolar/virology , Viral Proteins/metabolism , Proteolysis
15.
J Virol ; 97(3): e0000323, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36877049

ABSTRACT

Pseudorabies virus (PRV) infection activates inflammatory responses to release robust proinflammatory cytokines, which are critical for controlling viral infection and clearance of PRV. However, the innate sensors and inflammasomes involved in the production and secretion of proinflammatory cytokines during PRV infection remain poorly studied. In this study, we report that the transcription and expression levels of some proinflammatory cytokines, including interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor alpha (TNF-α), are upregulated in primary peritoneal macrophages and in mice during PRV infection. Mechanistically, Toll-like receptor 2 (TLR2), TLR3, TLR4, and TLR5 were induced by the PRV infection to enhance the transcription levels of pro-IL-1ß, pro-IL-18, and gasdermin D (GSDMD). Additionally, we found that PRV infection and transfection of its genomic DNA triggered AIM2 inflammasome activation, apoptosis-related speckle-like protein (ASC) oligomerization, and caspase-1 activation to enhance the secretion of IL-1ß and IL-18, which was mainly dependent on GSDMD, but not GSDME, in vitro and in vivo. Taken together, our findings reveal that the activation of the TLR2-TLR3-TRL4-TLR5-NF-κB axis and AIM2 inflammasome, as well as GSDMD, is required for proinflammatory cytokine release, which resists the PRV replication and plays a critical role in host defense against PRV infection. Our findings provide novel clues to prevent and control PRV infection. IMPORTANCE PRV can infect several mammals, including pigs, other livestock, rodents, and wild animals, causing huge economic losses. As an emerging and reemerging infectious disease, the emergence of PRV virulent isolates and increasing human PRV infection cases indicate that PRV is still a high risk to public health. It has been reported that PRV infection leads to robust release of proinflammatory cytokines through activating inflammatory responses. However, the innate sensor that activates IL-1ß expression and the inflammasome involved in the maturation and secretion of proinflammatory cytokines during PRV infection remain poorly studied. In this study, our findings reveal that, in mice, activation of the TLR2-TLR3-TRL4-TLR5-NF-κB axis and AIM2 inflammasome, as well as GSDMD, is required for proinflammatory cytokine release during PRV infection, and it resists PRV replication and plays a critical role in host defense against PRV infection. Our findings provide novel clues to prevent and control PRV infection.


Subject(s)
Herpesvirus 1, Suid , Inflammasomes , NF-kappa B , Animals , Humans , Mice , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Herpesvirus 1, Suid/metabolism , Inflammasomes/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mammals , NF-kappa B/metabolism , Swine , Toll-Like Receptor 2/genetics , Toll-Like Receptor 3 , Toll-Like Receptor 5 , Signal Transduction , Encephalitis, Viral/metabolism
16.
J Immunol ; 210(9): 1338-1350, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36971697

ABSTRACT

African swine fever is a fatal infectious disease caused by African swine fever virus (ASFV). The high mortality caused by this infectious disease is a significant challenge to the swine industry worldwide. ASFV virulence is related to its ability to antagonize IFN response, yet the mechanism of antagonism is not understood. Recently, a less virulent recombinant virus has emerged that has a EP402R gene deletion within the parental ASFV HLJ/18 (ASFV-ΔEP402R) strain. EP402R gene encodes CD2v. Hence we hypothesized that ASFV uses CD2v protein to evade type I IFN-mediated innate immune response. We found that ASFV-ΔEP402R infection induced higher type I IFN response and increased the expression of IFN-stimulated genes in porcine alveolar macrophages when compared with parental ASFV HLJ/18. Consistent with these results, CD2v overexpression inhibited type I IFN production and IFN-stimulated gene expression. Mechanistically, CD2v, by interacting with the transmembrane domain of stimulator of IFN genes (STING), prevented the transport of STING to the Golgi apparatus, and thereby inhibited the cGMP-AMP synthase-STING signaling pathway. Furthermore, ASFV CD2v disrupted IFNAR1-TYK2 and IFNAR2-JAK1 interactions, and thereby inhibited JAK-STAT activation by IFN-α. In vivo, specific pathogen-free pigs infected with the mutant ASFV-ΔEP402R strain survived better than animals infected with the parental ASFV HLJ/18 strain. Consistent with this finding, IFN-ß protein levels in the peripheral blood of ASFV-ΔEP402R-challenged pigs were significantly higher than in the blood of ASFV HLJ/18-challenged pigs. Taken together, our findings suggest a molecular mechanism in which CD2v inhibits cGMP-AMP synthase-STING and IFN signaling pathways to evade the innate immune response rendering ASFV infection fatal in pigs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Swine , Animals , African Swine Fever Virus/genetics , Viral Proteins , Signal Transduction , Gene Expression , Interferon Type I/metabolism
17.
J Virol ; 97(2): e0122722, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656014

ABSTRACT

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Proteins , Animals , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/genetics , African Swine Fever Virus/pathogenicity , Gene Deletion , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Sus scrofa , Swine , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/immunology
18.
Viruses ; 16(1)2023 12 19.
Article in English | MEDLINE | ID: mdl-38275939

ABSTRACT

The 2023 International African Swine Fever Workshop (IASFW) took place in Beijing, China, on 18-20 September 2023. It was jointly organized by the U.S.-China Center for Animal Health (USCCAH) at Kansas State University (KSU) and the Chinese Veterinary Drug Association (CVDA) and sponsored by the United States Department of Agriculture Foreign Agricultural Service (USDA-FAS), Harbin Veterinary Research Institute, and Zoetis Inc. The objective of this workshop was to provide a platform for ASF researchers around the world to unite and share their knowledge and expertise on ASF control and prevention. A total of 24 outstanding ASF research scientists and experts from 10 countries attended this meeting. The workshop included presentations on current ASF research, opportunities for scientific collaboration, and discussions of lessons and experiences learned from China/Asia, Africa, and Europe. This article summarizes the meeting highlights and presents some critical issues that need to be addressed for ASF control and prevention in the future.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Humans , African Swine Fever/prevention & control , African Swine Fever/epidemiology , Asia , China/epidemiology , Africa/epidemiology , Sus scrofa , Disease Outbreaks/veterinary
19.
Cell Rep ; 41(2): 111469, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36223739

ABSTRACT

Cytoskeleton proteins have been reported to be involved in the host antiviral immune responses. However, how cytoskeleton proteins regulate host antiviral immune responses is not fully understood. Here we report that the cytoskeletal protein vimentin is a negative regulator of type I interferon (IFN-I) production upon viral infection. Ectopic expression of vimentin suppresses RNA- and DNA viruses-induced IFN-I production, whereas knockout of vimentin expression enhances IFN-I production. Viral infection increases vimentin expression and ultimately inhibits IFN-I production. Mechanistically, upregulated vimentin interacts with TBK1 and IKKε to disrupt the interactions of TBK1-IRF3 and IKKε-IRF3, resulting in inhibition of IRF3 phosphorylation and nuclear translocation. Furthermore, we generate vimentin knockout mice to confirm that deficiency of vimentin gene in mice suppressed encephalomyocarditis virus replication in vivo. Our findings demonstrates that vimentin plays an important role in regulating IFN-I production, revealing its antiviral function of the cytoskeletal protein vimentin.


Subject(s)
I-kappa B Kinase , Interferon Type I , Animals , Antiviral Agents , I-kappa B Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Mice , Phosphorylation , Protein Serine-Threonine Kinases , RNA/metabolism , Vimentin/metabolism
20.
Front Microbiol ; 13: 970501, 2022.
Article in English | MEDLINE | ID: mdl-36110293

ABSTRACT

African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Melia toosendan Sieb. Et Zucc, has been demonstrated to possess analgesic, anti-inflammatory, anti-botulism and anti-microbial activities, and was used clinically as an anthelmintic, while the antiviral effect of TSN on ASFV has not been reported. In this study, we revealed that TSN exhibited a potent inhibitory effect on ASFV GZ201801-38 strain in porcine alveolar macrophages (PAMs; EC50 = 0.085 µM, SI = 365) in a dose-dependent manner. TSN showed robust antiviral activity in different doses of ASFV infection and reduced the transcription and translation levels of ASFV p30 protein, viral genomic DNA quantity as well as viral titer at 24 and 48 h post-infection. In addition, TSN did not affect virion attachment and release but intervened in its internalization in PAMs. Further investigations disclosed that TSN played its antiviral role by upregulating the host IFN-stimulated gene (ISG) IRF1 rather than by directly inactivating the virus particles. Overall, our results suggest that TSN is an effective antiviral agent against ASFV replication in vitro and may have the potential for clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...