Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gerontol A Biol Sci Med Sci ; 75(9): e53-e62, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32515825

ABSTRACT

The absence of clinical tools to evaluate individual variation in the pace of aging represents a major impediment to understanding aging and maximizing health throughout life. The human lens is an ideal tissue for quantitative assessment of molecular aging in vivo. Long-lived proteins in lens fiber cells are expressed during fetal life, do not undergo turnover, accumulate molecular alterations throughout life, and are optically accessible in vivo. We used quasi-elastic light scattering (QLS) to measure age-dependent signals in lenses of healthy human subjects. Age-dependent QLS signal changes detected in vivo recapitulated time-dependent changes in hydrodynamic radius, protein polydispersity, and supramolecular order of human lens proteins during long-term incubation (~1 year) and in response to sustained oxidation (~2.5 months) in vitro. Our findings demonstrate that QLS analysis of human lens proteins provides a practical technique for noninvasive assessment of molecular aging in vivo.


Subject(s)
Aging/physiology , Crystallins/physiology , Dynamic Light Scattering , Lens, Crystalline/physiology , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Crystallins/chemistry , Dynamic Light Scattering/methods , Electrophoresis, Polyacrylamide Gel , Female , Humans , Male , Microscopy, Electron, Transmission , Middle Aged , Oxidation-Reduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...