Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792040

ABSTRACT

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Proanthocyanidins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Proanthocyanidins/pharmacology
2.
Front Nutr ; 11: 1277877, 2024.
Article in English | MEDLINE | ID: mdl-38419855

ABSTRACT

The purpose of this study was to investigate the antioxidant activity of Armillaria gallica polysaccharides. It explored whether Armillaria gallica polysaccharides (AgP) could prevent HepG2 cells from H2O2-induced oxidative damage. The results demonstrated that HepG2 cells were significantly protected by AgP, and efficiently suppressed the production of reactive oxygen species (ROS) in HepG2 cells. Additionally, AgP significantly decreased the abnormal leakage of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) caused by H2O2, protecting cell membrane integrity. It was discovered that AgP was also found to regulate the activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), while reducing malondialdehyde (MDA), thus protecting cells from oxidative damage. According to the flow cytometry analysis and measurement of caspase-3, caspase-8, and caspase-9 activities, AgP could modulate apoptosis-related proteins and attenuate ROS-mediated cell apoptosis.

3.
Front Microbiol ; 14: 1265993, 2023.
Article in English | MEDLINE | ID: mdl-37829446

ABSTRACT

Proanthocyanidins (PCs) extracted from ume have many well-known functional properties. The aim of this study was to explore a novel natural food preservative using ume plum pulp proanthocyanidins (UPPP). The crude product of PCs from ume plum was obtained by using ethanol as extraction solvent and ultrasonic-assisted extraction, and then the pure product of UPPP was obtained by purification with AB-8 resin. The bacteriostatic ability of UPPP and the freshness preservation effect on blueberry were analyzed. The results showed that UPPP had a high inhibitory effect on Staphylococcus aureus (MIC of 1.563 mg/mL) and Escherichia coli (MIC of 3.125 mg/mL). Findings revealed that, in comparison to 0.02% potassium sorbate, blueberries treated with a high concentration of UPPP in a dipping treatment displayed superior quality maintenance after 7 days of storage at 4°C. Importantly, analysis of the various metrics showed that treatment with UPPP was significantly better compared to blueberries treated with 0.02% potassium sorbate. For example, the decay rate, weight loss, and total number of colonies of blueberries treated with 0.02% potassium sorbate were 55.56, 3.48%, and 4.24 ± 0.07 log CFU/mL, whereas the values of the above indexes for blueberries treated with 25 mg/mL of UPPP were 22.22, 3.09%, and 3.10 ± 0.17 log CFU/mL, respectively. Conversely, blueberries that were not dipped in any preservative displayed signs of deterioration as early as the 3rd day of the storage period, highlighting the potential of UPPP as a valuable method for preserving fruits and vegetables. Therefore, UPPP holds great promise as an innovative natural food preservative, effectively enhancing food safety, quality, and extending shelf-life.

4.
Heliyon ; 9(8): e18804, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576255

ABSTRACT

Preservation and microorganism control of fresh-cut fruit pose a persistent challenge in the food industry. To address this issue, we prepared a ß-cyclodextrin (ß-CD) inclusion complex containing carvacrol using a coprecipitation method and employed it for the non-contact fumigation of fresh-cut Shatangju mandarin slices. This biodegradable and safe preservative offers an effective means to combat spoilage and ensure product quality. We confirmed the formation of the encapsulated structure of the inclusion complex through various characterization methods, including scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). We also demonstrated the inhibitory effect of this preservative on Penicillium digitatum and its associated spoilage both in vitro and in vivo. The incidence and severity were significant lower in the inclusion complex-treated group (75.0% and 46.7%, respectively) compared to the group treated with pure carvacrol (100% and 69.2%, respectively). In addition, fruit freshness parameters and sensory evaluation showed that the inclusion complex treatment effectively maintained the overall quality of the fruit and achieved the highest consumer acceptance.

5.
J Clin Lab Anal ; 33(5): e22879, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30843291

ABSTRACT

BACKGROUND: Mycoplasma pneumoniae (M pneumoniae) is a common human etiology of respiratory infections. Nuclear acid sequence-based amplification (NASBA) shows good value for the detection of M pneumoniae that surpasses PCR. However, the optimal detection technology still remains to be identified. The purpose of this meta-analysis was to systematically evaluate the overall accuracy of NASBA for diagnosing M pneumoniae infections. METHODS: The databases PubMed, Cochrane Library, Google Scholar, CNKI, Wang Fang, and Baidu Scholar were comprehensively searched from their initiation date to December 2017 for NASBA in the diagnosis of M pneumoniae infection. Meta-DiSc 1.4 statistical software was used to evaluate the sensitivity (SEN), specificity (SPE), negative likelihood ratio (-LR), positive likelihood ratio (+LR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC). RevMan 5.2 statistical software was used for quality evaluation of the included articles. Publication bias was evaluated by funnel plot. RESULTS: Six articles with high quality, including 10 studies, were finally included in this meta-analysis. The combined statistics results for the diagnosis of M pneumoniae infection by NASBA were 0.77 (SEN, 95% CI: 0.71 to 0.82); 0.98 (SPE, 95% CI: 0.98 to 0.99); 0.22 (-LR, 95% CI: 0.13 to 0.39); 50.38 (+ LR, 95% CI: 21.85 to 116.17); 292.72 (DOR, 95% CI: 95.02 to 901.75); and 0.9875 (the area under the curve of SROC). CONCLUSION: Nuclear acid sequence-based amplification is a reliable technique to diagnose M pneumoniae infection. However, whether it can replace PCR and serology need to be further studied.


Subject(s)
Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Self-Sustained Sequence Replication/methods , Humans , Mycoplasma pneumoniae/pathogenicity , Odds Ratio , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...