Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Sci Adv ; 9(34): eadh2501, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37611093

ABSTRACT

Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17FNV). eSox17FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.


Subject(s)
Neural Stem Cells , Humans , Animals , Mice , Aging , Epigenomics , Gene Expression Profiling , HMGB Proteins , SOXF Transcription Factors/genetics
3.
Nucleic Acids Res ; 51(17): 8934-8956, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37607832

ABSTRACT

An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Mice , Animals , Transcription Factors/metabolism , Embryonic Stem Cells/metabolism , DNA/metabolism , Point Mutation , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753492

ABSTRACT

Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon muscle injury, MuSCs exit quiescence, reenter the cell cycle to proliferate and self-renew, and then differentiate and fuse to drive muscle regeneration. However, it remains poorly understood how MuSCs transition from quiescence to the cycling state. Here, we report that Pax3 and Pax7 binding protein 1 (Paxbp1) controls a key checkpoint during this critical transition. Deletion of Paxbp1 in adult MuSCs prevented them from reentering the cell cycle upon injury, resulting in a total regeneration failure. Mechanistically, we found an abnormal elevation of reactive oxygen species (ROS) in Paxbp1-null MuSCs, which induced p53 activation and impaired mTORC1 signaling, leading to defective cell growth, apoptosis, and failure in S-phase reentry. Deliberate ROS reduction partially rescued the cell-cycle reentry defect in mutant MuSCs. Our study reveals that Paxbp1 regulates a late cell-growth checkpoint essential for quiescent MuSCs to reenter the cell cycle upon activation.


Subject(s)
Adult Stem Cells/physiology , Cell Cycle Checkpoints , Nuclear Proteins/metabolism , Satellite Cells, Skeletal Muscle/physiology , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Gene Knockout Techniques , Intravital Microscopy , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Primary Cell Culture , Reactive Oxygen Species/metabolism , Time-Lapse Imaging
5.
Mol Biol Evol ; 38(7): 2854-2868, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33720298

ABSTRACT

Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.


Subject(s)
Cellular Reprogramming Techniques , Directed Molecular Evolution , POU Domain Factors/genetics , Animals , Kruppel-Like Factor 4 , Mice , Protein Engineering
6.
Semin Cancer Biol ; 67(Pt 1): 65-73, 2020 12.
Article in English | MEDLINE | ID: mdl-31419525

ABSTRACT

SOX17 is a transcription factor directing the specification and development of the primitive endoderm, primitive germ cells, definitive endoderm and, subsequently, is involved in the cardiovascular system and several endoderm-derived organs. The analysis of cancer genome sequencing data classified SOX17 as mutated cancer driver gene in endometrial cancer. These studies identified hotspot missense mutations within its DNA binding and transactivation domains. In somatic cell reprogramming, structure-based protein re-engineering showed a single missense mutation in SOX17 can change the DNA dependent heterodimer formation with OCT4 and enables the replacement of SOX2 with SOX17 mutants to induce pluripotency. This reveals the profound impact of specific missense mutations on gene function and regulatory activity. Here, we review the roles of SOX17 in cancer and discuss its cross-talk with the WNT/ß-catenin pathway, potentially reconciling its activity as re-engineered reprogramming factor and mutated cancer driver gene.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Neoplasms/pathology , SOXF Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , Humans , Neoplasms/genetics , Neoplasms/metabolism , SOXF Transcription Factors/genetics , Signal Transduction
7.
FEBS J ; 287(1): 122-144, 2020 01.
Article in English | MEDLINE | ID: mdl-31569299

ABSTRACT

The functional consequences of cancer-associated missense mutations are unclear for the majority of proteins. We have previously demonstrated that the activity of SOX and Pit-Oct-Unc (POU) family factors during pluripotency reprogramming can be switched and enhanced with rationally placed point mutations. Here, we interrogated cancer mutation databases and identified recurrently mutated positions at critical structural interfaces of the DNA-binding domains of paralogous SOX and POU family transcription factors. Using the conversion of mouse embryonic fibroblasts to induced pluripotent stem cells as functional readout, we identified several gain-of-function mutations that enhance pluripotency reprogramming by SOX2 and OCT4. Wild-type SOX17 cannot support reprogramming but the recurrent missense mutation SOX17-V118M is capable of inducing pluripotency. Furthermore, SOX17-V118M promotes oncogenic transformation, enhances thermostability and elevates cellular protein levels of SOX17. We conclude that the mutational profile of SOX and POU family factors in cancer can guide the design of high-performance reprogramming factors. Furthermore, we propose cellular reprogramming as a suitable assay to study the functional impact of cancer-associated mutations.


Subject(s)
Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Mutation, Missense , Neoplasms/pathology , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , SOXF Transcription Factors/genetics , Animals , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Neoplasms/genetics , Neoplasms/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , SOXF Transcription Factors/metabolism
8.
Nat Commun ; 10(1): 3477, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375664

ABSTRACT

Oct4, along with Sox2 and Klf4 (SK), can induce pluripotency but structurally similar factors like Oct6 cannot. To decode why Oct4 has this unique ability, we compare Oct4-binding, accessibility patterns and transcriptional waves with Oct6 and an Oct4 mutant defective in the dimerization with Sox2 (Oct4defSox2). We find that initial silencing of the somatic program proceeds indistinguishably with or without Oct4. Oct6 mitigates the mesenchymal-to-epithelial transition and derails reprogramming. These effects are a consequence of differences in genome-wide binding, as the early binding profile of Oct4defSox2 resembles Oct4, whilst Oct6 does not bind pluripotency enhancers. Nevertheless, in the Oct6-SK condition many otherwise Oct4-bound locations become accessible but chromatin opening is compromised when Oct4defSox2 occupies these sites. We find that Sox2 predominantly facilitates chromatin opening, whilst Oct4 serves an accessory role. Formation of Oct4/Sox2 heterodimers is essential for pluripotency establishment; however, reliance on Oct4/Sox2 heterodimers declines during pluripotency maintenance.


Subject(s)
Cellular Reprogramming/genetics , Chromatin/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cells, Cultured , Embryo, Mammalian , Epithelial-Mesenchymal Transition/genetics , Fibroblasts , Induced Pluripotent Stem Cells/physiology , Kruppel-Like Factor 4 , Mice, Transgenic , Mutation , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-6/metabolism , Primary Cell Culture , Protein Multimerization/genetics , SOXB1 Transcription Factors/genetics , Time Factors
9.
Stem Cell Reports ; 11(2): 593-606, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30078555

ABSTRACT

Directed biomolecular evolution is widely used to tailor and enhance enzymes, fluorescent proteins, and antibodies but has hitherto not been applied in the reprogramming of mammalian cells. Here, we describe a method termed directed evolution of reprogramming factors by cell selection and sequencing (DERBY-seq) to identify artificially enhanced and evolved reprogramming transcription factors. DERBY-seq entails pooled screens with libraries of positionally randomised genes, cell selection based on phenotypic readouts, and genotyping by amplicon sequencing for candidate identification. We benchmark this approach using pluripotency reprogramming with libraries based on the reprogramming factor SOX2 and the reprogramming incompetent endodermal factor SOX17. We identified several SOX2 variants outperforming the wild-type protein in three- and four-factor cocktails. The most effective variants were discovered from the SOX17 library, demonstrating that this factor can be converted into a highly potent inducer of pluripotency with a range of diverse modifications. We propose DERBY-seq as a broad-based approach to discover reprogramming factors for any donor/target cell combination applicable to direct lineage reprogramming in vitro and in vivo.


Subject(s)
Cell Differentiation , Cellular Reprogramming/genetics , High-Throughput Nucleotide Sequencing , Protein Engineering , Animals , Binding Sites , Biomarkers , Cell Line , Gene Library , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Nucleotide Motifs , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Dev Cell ; 41(4): 382-391.e5, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28535373

ABSTRACT

During mouse embryo development, both muscle progenitor cells (MPCs) and brown adipocytes (BAs) are known to derive from the same Pax7+/Myf5+ progenitor cells. However, the underlying mechanisms for the cell fate control remain unclear. In Pax7-null MPCs from young mice, several BA-specific genes, including Prdm16 and Ucp1 and many other adipocyte-related genes, were upregulated with a concomitant reduction of Myod and Myf5, two muscle lineage-determining genes. This suggests a cell fate switch from MPC to BA. Consistently, freshly isolated Pax7-null but not wild-type MPCs formed lipid-droplet-containing UCP1+ BA in culture. Mechanistically, MyoD and Myf5, both known transcription targets of Pax7 in MPC, potently repress Prdm16, a BA-specific lineage-determining gene, via the E2F4/p107/p130 transcription repressor complex. Importantly, inducible Pax7 ablation in developing mouse embryos promoted brown fat development. Thus, the MyoD/Myf5-E2F4/p107/p130 axis functions in both the Pax7+/Myf5+ embryonic progenitor cells and postnatal myoblasts to repress the alternative BA fate.


Subject(s)
Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Cell Lineage , Muscles/cytology , Stem Cells/cytology , Stem Cells/metabolism , Adipose Tissue, Brown/embryology , Adipose Tissue, Brown/metabolism , Animals , Cell Line , Cell Lineage/genetics , Cells, Cultured , DNA-Binding Proteins/metabolism , E2F4 Transcription Factor/metabolism , Embryo, Mammalian/metabolism , Gene Deletion , Gene Knockdown Techniques , Mice , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/metabolism , PAX7 Transcription Factor/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...