Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Front Immunol ; 15: 1360229, 2024.
Article in English | MEDLINE | ID: mdl-38410516

ABSTRACT

T cell activation is a tightly controlled process involving both positive and negative regulators. The precise mechanisms governing the negative regulators in T cell proliferation remain incompletely understood. Here, we report that homeodomain-only protein (HOPX), a homeodomain-containing protein, and its most abundant isoform HOPXb, negatively regulate activation-induced proliferation of human T cells. We found that HOPX expression progressively increased from naïve (TN) to central memory (TCM) to effector memory (TEM) cells, with a notable upregulation following in vitro stimulation. Overexpression of HOPXb leads to a reduction in TN cell proliferation while HOPX knockdown promotes proliferation of TN and TEM cells. Furthermore, we demonstrated that HOPX binds to promoters and exerts repressive effects on the expression of MYC and NR4A1, two positive regulators known to promote T cell proliferation. Importantly, our findings suggest aging is associated with increased HOPX expression, and that knockdown of HOPX enhances the proliferation of CD8+ T cells in older adults. Our findings provide compelling evidence that HOPX serves as a negative regulator of T cell activation and plays a pivotal role in T cell differentiation and in age-related-reduction in T cell proliferation.


Subject(s)
CD8-Positive T-Lymphocytes , Homeodomain Proteins , Aged , Humans , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle , Cell Differentiation , Cell Proliferation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
NEJM Evid ; 2(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-38145006

ABSTRACT

BACKGROUND: We sought to determine whether ongoing taste disturbance in the postacute sequelae of coronavirus disease 2019 period is associated with persistent virus in primary taste tissue. METHODS: We performed fungiform papillae biopsies on 16 patients who reported taste disturbance lasting more than 6 weeks after molecularly determined severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Then, on multiple occasions, we rebiopsied 10 of those patients who still had taste complaints for at least 6 months postinfection. Fungiform papillae obtained from other patients before March 2020 served as negative controls. We performed hematoxylin and eosin staining to examine fungiform papillae morphology and immunofluorescence and fluorescence in situ hybridization to look for evidence of persistent viral infection and immune response. RESULTS: In all patients, we found evidence of SARS-CoV-2, accompanying immune response and misshapen or absent taste buds with loss of intergemmal neurite fibers. Six patients reported normal taste perception by 6 months postinfection and were not further biopsied. In the remaining 10, the virus was eliminated in a seemingly random fashion from their fungiform papillae, but four patients still, by history, reported incomplete return to preinfection taste perception by the time we wrote this report. CONCLUSIONS: Our data show a temporal association in patients between functional taste, taste papillae morphology, and the presence of SARS-CoV-2 and its associated immunological changes. (Funded by Intramural Research Program/National Institute on Aging/National Institute of Allergy and Infectious Diseases/National Institutes of Health; ClinicalTrials.gov numbers NCT03366168 and NCT04565067.).


Subject(s)
COVID-19 , Dysgeusia , Taste Buds , Humans , COVID-19/complications , In Situ Hybridization, Fluorescence , SARS-CoV-2/genetics , Taste , Taste Buds/anatomy & histology , Taste Buds/pathology , Taste Perception , Tongue/anatomy & histology , Tongue/pathology , United States , Dysgeusia/etiology , Dysgeusia/pathology
3.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38140172

ABSTRACT

mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a key role in reducing morbidity and mortality from coronavirus disease 2019 (COVID-19). We conducted a double-blind, placebo-controlled phase I/II trial to evaluate the safety, tolerability, and immunogenicity of EXG-5003, a two-dose, controllable self-replicating RNA vaccine against SARS-CoV-2. EXG-5003 encodes the receptor binding domain (RBD) of SARS-CoV-2 and was administered intradermally without lipid nanoparticles (LNPs). The participants were followed for 12 months. Forty healthy participants were enrolled in Cohort 1 (5 µg per dose, n = 16; placebo, n = 4) and Cohort 2 (25 µg per dose, n = 16; placebo, n = 4). No safety concerns were observed with EXG-5003 administration. SARS-CoV-2 RBD antibody titers and neutralizing antibody titers were not elevated in either cohort. Elicitation of antigen-specific cellular immunity was observed in the EXG-5003 recipients in Cohort 2. At the 12-month follow-up, participants who had received an approved mRNA vaccine (BNT162b2 or mRNA-1273) >1 month after receiving the second dose of EXG-5003 showed higher cellular responses compared with equivalently vaccinated participants in the placebo group. The findings suggest a priming effect of EXG-5003 on the long-term cellular immunity of approved SARS-CoV-2 mRNA vaccines.

4.
Nat Commun ; 14(1): 6725, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872153

ABSTRACT

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2/metabolism , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell/metabolism , Nucleocapsid/metabolism , Spike Glycoprotein, Coronavirus
5.
6.
Elife ; 122023 08 17.
Article in English | MEDLINE | ID: mdl-37589453

ABSTRACT

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Subject(s)
Aging , CD8-Positive T-Lymphocytes , Humans , Aging/genetics , Complement Activation , DNA Methylation , Epigenesis, Genetic
7.
Semin Immunol ; 69: 101810, 2023 09.
Article in English | MEDLINE | ID: mdl-37515916

ABSTRACT

A vast array of αß T cell receptors (TCRs) is generated during T cell development in the thymus through V(D)J recombination, which involves the rearrangement of multiple V, D, and J genes and the pairing of α and ß chains. These diverse TCRs provide protection to the human body against a multitude of foreign pathogens and internal cancer cells. The entirety of TCRs present in an individual's T cells is referred to as the TCR repertoire. Despite an estimated 4 × 1011 T cells in the adult human body, the lower bound estimate for the TCR repertoire is 3.8 × 108. While the number of circulating T cells may slightly decrease with age, the changes in the diversity of the TCR repertoire is more apparent. Here, I review recent advancements in TCR repertoire studies, the methods used to measure it, how richness and diversity change as humans age, and some of the known consequences associated with these changes.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Adult , Humans , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
8.
Trends Immunol ; 44(7): 542-550, 2023 07.
Article in English | MEDLINE | ID: mdl-37248098

ABSTRACT

The ability of T cells to undergo robust cell division in response to antigenic stimulation is essential for competent T cell function. However, this ability is reduced with aging and contributes to increased susceptibility to infectious diseases, cancers, and other diseases among older adults. To better understand T cell aging, improved measurements of age-related cellular changes in T cells are necessary. The recent development of machine learning (ML)-assisted transcriptome-based quantification of individual CD8+ T cell age represents a significant step forward in this regard. It reveals both prominent and subtle changes in gene expression and points to potential functional alterations of CD8+ T cells with aging. I argue that single-cell transcriptome-based age prediction in the immune system may have promising future applications.


Subject(s)
CD8-Positive T-Lymphocytes , Transcriptome , Humans , Aged , Aging , Cellular Senescence/physiology , Immune System
9.
Alzheimers Dement ; 19(11): 4841-4851, 2023 11.
Article in English | MEDLINE | ID: mdl-37027458

ABSTRACT

INTRODUCTION: Growing evidence suggests that some common infections are causally associated with cognitive impairment; however, less is known about the burden of multiple infections. METHODS: We investigated the cross-sectional association of positive antibody tests for herpes simplex virus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV), and Toxoplasma gondii (TOX) with Mini-Mental State Examination (MMSE) and delayed verbal recall performance in 575 adults aged 41-97 from the Baltimore Epidemiologic Catchment Area Study. RESULTS: In multivariable-adjusted zero-inflated Poisson (ZIP) regression models, positive antibody tests for CMV (p = .011) and herpes simplex virus (p = .018) were individually associated with poorer MMSE performance (p = .011). A greater number of positive antibody tests among the five tested was associated with worse MMSE performance (p = .001). DISCUSSION: CMV, herpes simplex virus, and the global burden of multiple common infections were independently associated with poorer cognitive performance. Additional research that investigates whether the global burden of infection predicts cognitive decline and Alzheimer's disease biomarker changes is needed to confirm these findings.


Subject(s)
Cytomegalovirus Infections , Epstein-Barr Virus Infections , Adult , Humans , Follow-Up Studies , Cross-Sectional Studies , Baltimore/epidemiology , Herpesvirus 4, Human , Herpesvirus 3, Human , Cytomegalovirus , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Cognition
10.
iScience ; 26(4): 106335, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968065

ABSTRACT

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. We have developed an srRNA that functions optimally at around 33°C (skin temperature) and is inactivated at or above 37°C (core body temperature) as a safety switch. This temperature-controllable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B cell stimulation using antigen protein was followed by c-srRNA booster vaccination. We have thus designed a pan-coronavirus booster vaccine that incorporates both spike-receptor-binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral internal proteins, from both severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

11.
Immun Ageing ; 19(1): 54, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36368988

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized. RESULTS: We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells. CONCLUSION: Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.

12.
bioRxiv ; 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36263074

ABSTRACT

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. Considering that human skin temperature is around 33°C, lower than core body temperature of 37°C, we have developed an srRNA that functions optimally at skin temperature and is inactivated at or above 37°C as a safety switch. This temperature- c ontrollable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B-cell stimulation using antigen protein was followed by c-srRNA booster vaccination. Using c-srRNA, we have designed a pan-coronavirus booster vaccine that incorporates both spike receptor binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral non-surface proteins, from both SARS-CoV-2 and MERS-CoV. It can thereby potentially immunize against SARS-CoV-2, SARS-CoV, MERS-CoV, and their variants. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

13.
Nat Commun ; 13(1): 5128, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050300

ABSTRACT

The decline of CD8+ T cell functions contributes to deteriorating health with aging, but the mechanisms that underlie this phenomenon are not well understood. We use single-cell RNA sequencing with both cross-sectional and longitudinal samples to assess how human CD8+ T cell heterogeneity and transcriptomes change over nine decades of life. Eleven subpopulations of CD8+ T cells and their dynamic changes with age are identified. Age-related changes in gene expression result from changes in the percentage of cells expressing a given transcript, quantitative changes in the transcript level, or a combination of these two. We develop a machine learning model capable of predicting the age of individual cells based on their transcriptomic features, which are closely associated with their differentiation and mutation burden. Finally, we validate this model in two separate contexts of CD8+ T cell aging: HIV infection and CAR T cell expansion in vivo.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Aging/genetics , CD8-Positive T-Lymphocytes/metabolism , Cross-Sectional Studies , HIV Infections/genetics , HIV Infections/metabolism , Humans , Transcriptome
14.
J Clin Invest ; 132(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35708913

ABSTRACT

A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens, and TCR repertoire size is believed to decline with age. However, the precise size of human TCR repertoires, in both total and subsets of T cells, as well as their changes with age, are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRß repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier-based (UMI-based) RNA-seq method. Thorough analysis of 1.9 × 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 × 108. Alterations of the TCR repertoire with age were observed in all 4 subsets of T cells. The greatest reduction was observed in naive CD8+ T cells, while the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting that aging has a more profound effect on cytotoxic as opposed to helper T cell functions. This may explain the increased susceptibility of older adults to novel infections.


Subject(s)
CD8-Positive T-Lymphocytes , T-Lymphocyte Subsets , Adult , Aged , CD4-Positive T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics
16.
Immunity ; 55(3): 557-574.e7, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263570

ABSTRACT

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.


Subject(s)
Epigenomics , Lymphocyte Activation , CD8-Positive T-Lymphocytes , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Humans , Lymphocyte Activation/genetics
17.
Front Immunol ; 13: 1095140, 2022.
Article in English | MEDLINE | ID: mdl-36741385

ABSTRACT

Lysine specific methyltransferase 2D (Kmt2d) catalyzes the mono-methylation of histone 3 lysine 4 (H3K4me1) and plays a critical role in regulatory T cell generation via modulating Foxp3 gene expression. Here we report a role of Kmt2d in naïve CD8+ T cell generation and survival. In the absence of Kmt2d, the number of CD8+ T cells, particularly naïve CD8+ T cells (CD62Lhi/CD44lo), in spleen was greatly decreased and in vitro activation-related death significantly increased from Kmt2d fl/flCD4cre+ (KO) compared to Kmt2d fl/flCD4cre- (WT) mice. Furthermore, analyses by ChIPseq, RNAseq, and scRNAseq showed reduced H3K4me1 levels in enhancers and reduced expression of apoptosis-related genes in activated naïve CD8+ T cells in the absence of Kmt2d. Finally, we confirmed the activation-induced death of antigen-specific naïve CD8+ T cells in vivo in Kmt2d KO mice upon challenge with Listeria monocytogenes infection. These findings reveal that Kmt2d regulates activation-induced naïve CD8+ T cell survival via modulating H3K4me1 levels in enhancer regions of apoptosis and immune function-related genes.


Subject(s)
CD8-Positive T-Lymphocytes , Histone-Lysine N-Methyltransferase , Lysine , Animals , Mice , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Transcription Factors/metabolism
18.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34706222

ABSTRACT

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Immunity , Transcription Factors/metabolism , Transcriptome , Epigenomics/methods , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Transcription Factors/genetics
19.
Immun Ageing ; 18(1): 36, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34551812

ABSTRACT

The rapidity of SARS-CoV-2 vaccination around the world has substantially reduced the number of new cases of COVID-19 and their severity in highly vaccinated countries. The unanticipated efficacy of SARS-CoV-2 vaccines in older adults has been very encouraging but the longevity of vaccine immunity is currently unknown and protection against emerging variants may be lower. Adoptive immunotherapy with neutralizing mAb may offer an alternative for poor vaccine responders, while the mechanisms underlying failure to respond are still unclear. Further studies of B and T cell responses and their regulation particularly in older populations will provide a more solid foundation to develop suitable approaches to optimize vaccine responses of older adults who fail to mount a durable response.

20.
Immunohorizons ; 4(8): 475-484, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32769179

ABSTRACT

Stimulation of human primary T cells with immobilized anti-CD3 and anti-CD28 Abs in vitro provide a system to study T cell activation and proliferation and an avenue for expanding T cells for immunotherapy. Magnetic beads conjugated with anti-CD3 and anti-CD28 Abs (Dynabeads Human T-Activator [D-TCA]) have been a golden standard for stimulating human primary T cells in vitro. In this study, we report that an application using anti-CD3 and anti-CD28 Abs conjugated on lipid microbubbles (microbubble-based human T cell activator [MB-TCA]) to stimulate primary human naive T cells resulted in expansion superior to D-TCA. In 56-d cultures with three repeated stimulation cycles (14 d per stimulation), we found that 1) MB-TCA induced significantly better expansion (20- and 10-fold increase) of naive CD4+ and CD8+ T cells than did D-TCA; 2) MB-TCA- and D-TCA-stimulated T cells had a similar number of initial cell divisions, but MB-TCA had significantly lower activation-induced cell death than D-TCA; 3) MB-TCA-stimulated T cells produced less TNF-α than did D-TCA; and 4) blocking TNF-α action via adding an Ab against TNF-αR (TNFRSF1A) significantly improved expansion of T cells activated by D-TCA in vitro. Together, we demonstrated that the MB-TCA induces a better expansion of human naive T cells in vitro and offers advantages in both basic and clinical applications in which the outcome depends on the number of T cells.


Subject(s)
CD28 Antigens/immunology , CD3 Complex/immunology , Lymphocyte Activation , T-Lymphocytes/cytology , Humans , In Vitro Techniques , Lipids/immunology , Microbubbles , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...