Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276693

ABSTRACT

Water scarcity and water pollution have become increasingly severe, and therefore, the purification of water resources has recently garnered increasing attention. Given its position as a major water resource, the efficient purification of drinking water is of crucial importance. In this study, we adopted a phase transition method to prepare ZrO2/BCM (bamboo cellulose membranes), after which we developed IP-ZrO2/BC-NFM (bamboo cellulose nanofiltration membranes) through interfacial polymerization using piperazine (PIP) and tricarbonyl chloride (TMC). Subsequently, we integrated these two membranes to create a combined "ultrafiltration + nanofiltration" membrane process for the treatment of drinking water. The membrane combination process was conducted at 25 °C, with ultrafiltration at 0.1 MPa and nanofiltration at 0.5 MPa. This membrane combination, featuring "ultrafiltration + nanofiltration," had a significant impact on reducing turbidity, consistently maintaining the post-filtration turbidity of drinking water at or below 0.1 NTU. Furthermore, the removal rates for CODMN and ammonia nitrogen reached 75% and 88.6%, respectively, aligning with the standards for high-quality drinking water. In a continuous 3 h experiment, the nanofiltration unit exhibited consistent retention rates for Na2SO4 and bovine serum protein (BSA), with variations of less than 5%, indicating exceptional separation performance. After 9 h of operation, the water flux of the nanofiltration unit began to stabilize, with a decrease rate of approximately 25%, demonstrating that the "ultrafiltration + nanofiltration" membrane combination can maintain consistent performance during extended use. In conclusion, the "ultrafiltration + nanofiltration" membrane combination exhibited remarkable performance in the treatment of drinking water, offering a viable solution to address issues related to water scarcity and water pollution.

2.
Article in English | MEDLINE | ID: mdl-36901534

ABSTRACT

The main purpose of this study was to determine the natural radioactivity level of raw radionuclides in the metal tailings of a mine in Lhasa, Tibet, and to conduct sampling and detection in 17 typical metal tailing mines in Lhasa, Tibet. The specific activity concentrations of 226Ra, 232Th, and 40K in the samples were calculated. The total αßχγ radiation, radon concentration, and outdoor absorbed dose rate in the air 1.0 m above the ground were measured. The γ radiation levels affecting miners and their surrounding residents were assessed. The results show that the radiation dose ranges from 0.08 µSv/h to 0.26 µSv/h, and the radon concentration ranges from 10.8 Bq/m3 to 29.6 Bq/m3, which does not exceed the national radiation-related standards, and the environmental hazard risk is low. The specific activity concentration of 226Ra ranged from 8.91 Bq/kg to 94.61 Bq/kg, the specific activity concentration of 232Th ranged from 2.90 Bq/kg to 89.62 Bq/kg, and the specific activity concentration of 40K was less than MDA to 762.89 Bq/kg. The average absorbed dose rate (DO) of the 17 mining areas was 39.82 nGy/h, the average annual effective dose rate (EO) was 0.057 mSv/y. The average external risk index of the 17 mining areas was 0.24, the average internal risk index was 0.34, and the average γ index was 0.31, all of which were less than the maximum permissible limit. This means that the metal tailings from all 17 mining areas were within the limit for γ radiation and, therefore, can be used in bulk as major building materials without posing a significant radiation threat to the residents of the study area.


Subject(s)
Radiation Monitoring , Radioactivity , Radon , Soil Pollutants, Radioactive , Tibet , Radon/analysis , Radioisotopes/analysis , Metals , Soil Pollutants, Radioactive/analysis , Background Radiation , Thorium/analysis , Potassium Radioisotopes/analysis
3.
Front Chem ; 10: 850171, 2022.
Article in English | MEDLINE | ID: mdl-35350776

ABSTRACT

The large amount of untreated pyrite tailings has caused serious environmental problems, and the recycling of pyrite tailings is considered as an attractive strategy. Here, we reported a novel non-sintered ceramsite prepared with pyrite tailings (PTNC) as the main active raw material for phosphorus control, and the dosage effect of ingredients on total phosphorus (TP) removal ability was investigated. The results from Plackett-Burman Design (PBD) suggested the dosages of dehydrated sludge, sodium bicarbonate, and cement were the factors which significantly affect the TP removal ability. The Box-Behnken Design (BBD) based response surface methodology was further employed, and it indicated the interactions between different factors, and the optimized recipe for PTNC was 84.5 g (pyrite tailings), 10 g (cement), 1 g (calcined lime), 1 g (anhydrous gypsum), 3 g (dehydrated sludge), and 0.5 g (sodium bicarbonate). The optimized PTNC was characterized and which presented much higher specific area (7.21 m2/g) than the standard limitation (0.5 m2/g), as well as a lower wear rate (2.08%) rather than 6%. Additionally, the leaching metal concentrations of PTNC were far below the limitation of Chinese National Standard. The adsorption behavior of TP on PTNC was subsequently investigated with batch and dynamic experiments. It was found that the calculated max adsorption amount (qmax) was about 7 mg/g, and PTNC was able to offer a stable TP removal ability under different hydraulic retention time (HRT). The adsorption mechanism was discussed by model fitting analysis combined with XRD and SEM characterization, and cobalt phosphide sulfide was observed as the newly formed substance through the adsorption process, which suggested the existing of both physical and chemical adsorption effect. Our research not only offered an economic preparation method of ceramsite, but also broadened the recycling pathway of pyrite tailings.

4.
Chemosphere ; 285: 131542, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34329122

ABSTRACT

Currently, Tetrabromobisphenol A (TBBPA) has been regarded as an emerging organic pollutant and efficient TBBPA elimination technology has been attracting increasing attention. In this work, a novel photocatalyst, MoS2/SnIn4S8, was synthesized through hydrothermal method by introducing few-layer MoS2 nanosheets and then employed to establish an integrated photocatalytic reduction/oxidation system for the remediation of TBBPA under visible light. The characterization results demonstrated that the few-layer MoS2 nanosheets were well combined with SnIn4S8 and significantly lowered the recombination rate of the photo-induced electron and holes, leading to outstanding photocatalytic performance of MoS2/SnIn4S8 composite. Besides, the MoS2/SnIn4S8 composite also exhibited excellent reusability (over 10 runs) and stability. The TBBPA degradation experiments showed that the integrated photocatalytic reduction/oxidation system was able to completely degrade TBBPA and mineralize its byproducts (60.2 ± 2.9%). In the photocatalytic reduction, due to the cleavage of C-Br bonds by photo-induced electrons, TBBPA underwent stepwise debromination and finally transferred into BPA in 6 h. In the following photocatalytic oxidation, under the attack of reactive oxygen species (1O2, h+,OH and O2-), BPA was first decomposed into aromatic products (such as phenol, benzoic acid, p-hydroxybenzyl alcohol and so on) via C-C bond cracking and hydroxylation, and then further oxidized into organic acids like maleic acid and muconic acid through ring-opening, and finally mineralized into CO2 and H2O. What was noteworthy was that the final effluent from the photocatalytic reduction/oxidation system showed no toxicity to the luminescent bacteria.


Subject(s)
Molybdenum , Polybrominated Biphenyls , Catalysis , Piperidines
5.
Membranes (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35054568

ABSTRACT

It is of great significance to search for efficient, renewable, biodegradable and economical membrane materials. Herein, we developed an organic-inorganic hybrid regenerated cellulose membrane (ZrO2/BCM) with excellent hydrophilic and anti-fouling properties. The membrane was prepared by introducing ZrO2 particles into an N-Methylmorpholine-N-oxide(NMMO)/bamboo cellulose(BC) solution system by the phase inversion method. The physi-chemical structure of the membranes were characterized based on thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The modified regenerated cellulose membrane has the excellent rejection of bovine serum albumin (BSA) and anti-fouling performance. The membrane flux of ZrO2/BCM is 321.49 (L/m2·h), and the rejection rate of BSA is 91.2%. Moreover, the membrane flux recovery rate after cleaning with deionized water was 90.6%. This new type of separation membrane prepared with green materials holds broad application potential in water purification and wastewater treatment.

6.
RSC Adv ; 10(3): 1309-1318, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-35494724

ABSTRACT

Bamboo cellulose (BC) is one of the most abundant renewable, hydrophilic, inexpensive, and biodegradable organic materials. The cellulose membrane is one of the best materials for replacing petroleum-based polymer films used for water purification. In this study, N-methylmorpholine-N-oxide (NMMO) was used as a solvent to dissolve cellulose and chitosan, and a regenerated cellulose/chitosan membrane (BC/CSM) was prepared by phase inversion. A new kind of cellulose/chitosan nanofiltration membrane (IP-BC/CS-NFM) was obtained by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC). The IP-BC/CS-NFM was characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), the retention rate, and water flux. FT-IR analysis showed that polypiperazine amide was formed. Additionally, FE-SEM and AFM showed that a uniform roughness and dense functional layer was formed on the surface of the IP-BC/CS-NFM. Furthermore, TGA analysis showed that the thermal stability of IP-BC/CS-NFM is better than that of BC/CSM. The inorganic salt retention of IP-BC/CS-NFM was measured using a membrane performance evaluation instrument, following the order R(Na2SO4) > R(MgSO4) > R(MgCl2) > R(NaCl). At a pressure of 0.5 MPa, the retention rates for NaCl, Na2SO4, MgSO4, MgCl2, Methyl Orange, and Methyl Blue were 40.26%, 71.34%, 62.55%, 53.28%, 93.65%, and 98.86%, and the water flux values were 15.64, 13.56, 14.03, 14.88, 13.28, and 12.35 L m-2 h-1, respectively. The IP-BC/CS-NFM showed better water flux and a higher rejection rate in aqueous dye-salt solutions, and had a good separation performance under different operating pressure conditions.

7.
Chem Commun (Camb) ; 55(6): 850-853, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30601515

ABSTRACT

In this work, we directly coated a layer of tannic acid (TA)-Mn2+ chelate networks on black phosphorus (BP) nanosheets (BPNSs) via a simple one-step method. The as-synthesized TA-Mn2+ chelate-coated BPNSs (BPNS@TA-Mn) have excellent T1 MRI contrast enhancement capability, good photoacoustic imaging performance, and high photothermal conversion efficiency, showing great potential in imaging-guided photothermal therapy.

8.
Polymers (Basel) ; 9(4)2017 Mar 23.
Article in English | MEDLINE | ID: mdl-30970796

ABSTRACT

Abstract: Presently, most nanofiltration membranes are prepared with non-biodegradable petrochemical materials. This process is harmful to the ecosystem and consumes a large amount of non-renewable energy. In this study, biodegradable and biocompatible antibacterial cellulose/chitosan nanofiltration membranes (BC/CS-NFMs) were fabricated and characterized for their mechanical strength, antimicrobial activity, salt and dye filtration performance, and polyethylene glycol (PEG) retention using Thermal gravimetric analysis (TGA), Field emission scanning electron microscopy(FE-SEM), Fourier transform infrared spectroscopy(FT-IR), and X-ray diffraction (XRD). The BC/CS-NFMs were obtained by the hydrolysis and carboxymethylation of dense cellulose/chitosan membranes (BC/CSMs). The tensile strength of the BC/CS-NFMs decreased as the chitosan content increased. In addition, the thermal stability and antibacterial ability of the BC/CS-NFMs improved. The pore size is less than 1 nm, and a spongy, layered structure is observed in the cross-sectional FE-SEM images. FT-IR analysis shows that a part of the hydroxyl in cellulose transforms to carboxymethyl during the hydrolysis and carboxymethylation of the BC/CSMs. No obvious changes can be observed in the cellulose and chitosan after the blend membrane formation from the XRD measurements. Based on the experimental results on the permeation and rejection of BC/CS-NFMs, different proportions of cellulose and chitosan nanofiltration membranes almost did not affect the water flux and rejection rate. The BC/CS-NFMs showed better water flux and a higher rejection rate in aqueous dye-salt solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...