Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2836-2846, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38189158

ABSTRACT

Property-structure reconfigurable nanoparticles (NPs) provide additional flexibility for effectively and flexibly manipulating light at the nanoscale. This has facilitated the development of various multifunctional and high-performance nanophotonic devices. Resonant NPs based on dielectric active materials, especially phase change materials, are particularly promising for achieving reconfigurability. However, the on-demand control of the properties, especially the morphology, in individual dielectric resonant NP remains a significant challenge. In this study, we present an all-optical approach for one-step fabrication of Ge2Sb2Te5 (GST) hemispherical NPs, integrated active reversible phase-state switching, and morphology reshaping. Reversible optical switching is demonstrated, attributed to reversible phase-state changes, along with unidirectional modifications to their scattering intensity resulting from morphology reshaping. This novel technology allows the precise adjustment of each structural pixel without affecting the overall functionality of the switchable nanophotonic device. It is highly suitable for applications in single-pixel-addressable active optical devices, structural color displays, and information storage, among others.

2.
Nanoscale Res Lett ; 16(1): 69, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33909179

ABSTRACT

In crystalline materials, grain boundary and anisotropy of crystal structure affect their mechanical properties. The effects of interfacial structure on the mechanical properties may be diverse when the multilayer film is loaded along different directions. In this work, we performed a series of molecular dynamics simulations of the tension of in-plane single and polycrystalline Cu/Pd multilayered films with cube-on-cube (COC) and twinned interfaces to explore the effects of the interfacial structure, loading direction and in-plane grain boundaries on their mechanical properties. The interfacial misfit dislocation lines become bent after relaxation, and the high temperature of 300 K was found as a necessary condition. When stretched along 〈110〉 direction, the strengthening effect of the COC interface is more noticeable; however, when stretched along 〈112〉 direction, the twin interface's strengthening effect is more visible, showing the anisotropic effect of interfacial structure on mechanical properties. However, in the in-plane honeycomb polycrystalline sample, the twin interface showed a pronounced strengthening effect, and no jogged dislocations were observed.

3.
ACS Appl Mater Interfaces ; 13(11): 12797-12804, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33355461

ABSTRACT

4D printing allows 3D printed structures to change their shapes overtime under external stimuli, finding a wide range of potential applications in actuators, soft robotics, active metamaterials, flexible electronics, and biomedical devices. However, most 4D printing uses soft polymers to accommodate large strain shape-changing capability at the price of low stiffness, which impedes their engineering applications. Here, we demonstrate an approach to design and manufacture self-morphing structures with large deformation and high modulus (∼4.8 GPa). The structures are printed by multimaterial direct ink writing (DIW) using composite inks that contain a high volume fraction of solvent, photocurable polymer resin, and short glass fibers as well as fumed silica. During printing, the glass fibers undergo shear-induced alignment through the nozzle, leading to highly anisotropic mechanical properties. The solvent is then evaporated, during which the aligned glass fibers enable anisotropic shrinkage in the parallel and perpendicular directions to the fiber alignment for shape shifting. A final postphotocuring step is applied to further increase the stiffness of the composite from ∼300 MPa to ∼4.8 GPa. A finite element analysis (FEA) model is developed to predict the influence of the solvent, fiber contents, and fiber orientation on the shape shifting. We demonstrate the anisotropic volume shrinkage of the structures can be used as active hinges to transform printed two-dimensional structures into complex three-dimensional structures with large shape-shifting and outstanding mechanical properties. This strategy for fabricating composite structures with programmable architectures and excellent mechanical properties shows potential applications in morphing lightweight structures with load-bearing capabilities.

4.
Nanoscale Res Lett ; 15(1): 74, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32266671

ABSTRACT

The synergistic effects of surface treatment and interleaf on the interlaminar mechanical properties of glass fiber-aluminum laminates were studied. Aluminum sheets were treated with alkaline etching. Meanwhile, a graphene oxide (GO) interleaf was introduced between the aluminum sheet and the glass fiber-reinforced epoxy composite. Double cantilever beam and end-notched flexure tests were employed to evaluate the interlaminar fracture toughness of the glass fiber-aluminum laminates. The obtained results show that the toughening efficiency of the interleaf is dependent on the aluminum surface characteristics as well as the GO loading. Further comparison reveals that the highest mode-I and mode-II fracture toughnesses are obtained in the specimens with alkali etching treatment and addition of GO interleaf with 0.5 wt% of GO loading, which are 510% and 381% higher in comparison to the plain specimen. Fracture surfaces were observed to further uncover the reinforcement mechanisms.

5.
ACS Appl Mater Interfaces ; 12(15): 17979-17987, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32196302

ABSTRACT

Inspired by diverse shape-shifting phenomena in nature, various man-made shape programmable materials have been developed for applications in actuators, deployable devices, and soft robots. However, fabricating mechanically robust shape-morphing structures with on-demand, rapid shape-transformation capability, and high load-bearing capacity is still a great challenge. Herein, we report a mechanically robust and rapid shape-shifting material system enabled by the volatilization of a non-fully-reacted, volatile component in a partially cured cross-linking network obtained from photopolymerization. Volume shrinkage induced by the loss of the volatile component is exploited to drive complex shape transformations. After shape transformation, the residual monomers, cross-linkers, and photoinitiators that cannot volatilize still exist in the network, which is ready for a further photopolymerization to significantly stiffen the initial material. Guided by analytic models and finite element analysis, we experimentally demonstrate that a variety of shape transformations can be achieved, including both 2D-to-3D and 3D-to-3D' transformations, such as a buckyball self-folding from a 2D hexagonal lattice sheet and multiple pop-up structures transforming from their initial compact configurations. Moreover, we show that an ultra-low-weight 3D Miura-ori structure transformed from a 2D sheet can hold more than 1600 times its weight after stiffness improvement via postcuring. This work provides a versatile and low-cost method to fabricate rapid and robust shape-morphing structures for potential applications in soft robots, deployable antennas, and optical devices.

6.
Nanomaterials (Basel) ; 9(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847293

ABSTRACT

It has been found that there are two kinds of interfaces in a Cu/Pd multilayered film, namely, cube-on-cube and twin. However, the effects of the interfacial structure and modulation period on the mechanical properties of a Cu/Pd multilayered film remain unclear. In this work, molecular dynamics simulations of Cu/Pd multilayered film with different interfaces and modulation periods under in-plane tension are performed to investigate the effects of the interfacial structure and modulation period. The interface misfit dislocation net exhibits a periodic triangular distribution, while the residual internal stress can be released through the bending of dislocation lines. With the increase of the modulation period, the maximum stress shows an upward trend, while the flow stress declines. It was found that the maximum stress and flow stress of the sample with a cube-on-cube interface is higher than that of the sample with a twin interface, which is different from the traditional cognition. This unusual phenomenon is mainly attributed to the discontinuity and unevenness of the twin boundaries caused by the extremely severe lattice mismatch.

7.
Nanoscale Res Lett ; 14(1): 283, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31420769

ABSTRACT

B2 phase copper-zirconium (CuZr) particles are often used as an enhancement agent to improve the toughness of metallic glass; however, the orientation dependence of its phase transformation behaviors under loading remains unclear. In this work, molecular dynamics simulation of uniaxial tension and compression of B2 phase CuZr along different crystallographic orientation are performed to investigate the orientation-related mechanical response and phase transformation mechanisms. It was found that the mechanical behavior of CuZr exhibits obvious tension/compression asymmetry, but their failure mode is mainly local amorphization. Three different phase transformation behaviors, B2→FCC, B2→BCT, and B2→HCP, were observed in tension and compression along [001], and tension along [110], respectively. The transformations are realized by lattice rotation (~ 5°), uniform deformation and separation between Cu and Zr atomic layers, respectively. Before failure by local amorphization, phase transformation region can be recovered after unloading, showing the superelasticity.

8.
Sci Rep ; 8(1): 3089, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449626

ABSTRACT

Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.


Subject(s)
Copper/chemistry , Graphite/chemistry , Nanostructures/chemistry , Materials Testing , Molecular Dynamics Simulation , Physical Phenomena , Pressure , Tensile Strength
9.
Nanomaterials (Basel) ; 7(11)2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29113122

ABSTRACT

In this work, the interaction between dislocation loop (DL) and coherent twin boundary (CTB) in a body-centered cubic (BCC) tantalum (Ta) film during nanoindentation was investigated with molecular dynamics (MD) simulation. The formation and propagation of <111> full DLs in the nanotwinned (nt) Ta film during the indentation was observed, and it was found that CTB can strongly affect the stress distribution in the Ta film, and thus change the motion and type of dislocations. There are three kinds of mechanisms for the interaction between DL and CTB in a twinned BCC Ta film: (i) dislocation absorption, (ii) dislocation desorption, and (iii) direct slip transmission. The nucleation of twin boundary dislocations and the formation of the steps in CTB were also observed during the indentation. The mechanisms presented in this work can provide atomic images for understanding the plastic deformation of BCC metals with mirror-symmetry grain boundary structures, and provide available information for the evaluation and design of high-performance nt BCC metallic thin film coatings.

10.
Sci Rep ; 7(1): 4768, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684748

ABSTRACT

Twin boundaries (TBs) have been observed in and introduced into nonmetallic materials in recent years, which brought new concepts for the design of new structural materials. However, the roles of TB on the mechanical properties and strengthening/softening of transition metal nitrides remain unclear. To investigate the TB effects and the in-plane anisotropy, nanoindentations on VN (111) films with and without TB were simulated with molecular dynamics, in which a cylindrical indenter was used, and its longitudinal axis were assigned along <112> and <110>, respectively. We found that the effect of the indenter orientation is insignificant in the elastic stage, but significant in the following inelastic deformation. Different deformation mechanisms can be found for inelastic deformation, such as twinning and dislocation glide. The migration of TB can be observed, which may release the internal stress, resulting in softening; while the dislocation locking and pileup at TB can enhance the strength. We also found that the strengthening/softening induced by TB depends on the deformation mechanisms induced by indenter directions.

11.
Sci Rep ; 6: 35665, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767046

ABSTRACT

We performed molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, aimed to investigate the effects of hetero-twin interface and twin thickness on hardness. We found that both twinning partial slip (TPS) and partial slip parallel with twin boundary (PSPTB) can reduce hardness and therefore should not be ignored when evaluating mechanical properties at nanoscale. There is a critical range of twin thickness λ (~25 Å < λ < ~31 Å), in which hardness of the multilayer films is maximized. At a smaller λ, TPSs appear due to the reaction between partial dislocations and twin boundary accounts for the softening-dominated mechanism. We also found that the combination of the lowered strengthening due to confined layer slips and the softening due to TPSs and PSPTBs results in lower hardness at a larger λ.

SELECTION OF CITATIONS
SEARCH DETAIL
...