Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15908, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741947

ABSTRACT

The noradrenergic fibers of the locus coeruleus, together with mossy fibers and climbing fibers, comprise the three types of cerebellar afferents that modulate the cerebellar neuronal circuit. We previously demonstrated that noradrenaline (NA) modulated synaptic transmission in the mouse cerebellar cortex via adrenergic receptors (ARs). In the present study, we investigated the effect of NA on facial stimulation-evoked cerebellar molecular layer interneuron (MLI)-Purkinje cell (PC) synaptic transmission in urethane-anesthetized mice using an in vivo cell-attached recording technique and a pharmacological method. MLI-PC synaptic transmission was induced by air-puff stimulation (duration: 60 ms) of the ipsilateral whisker pad, which exhibited positive components (P1 and P2) accompanied by a pause in simple spike activity. Cerebellar molecular layer application of NA (15 µM) decreased the amplitude and area under the curve of P1, and the pause in simple spike activity, but increased the P2/P1 ratio. The NA-induced decrease in P1 amplitude was concentration-dependent, and the half-inhibitory concentration was 10.94 µM. The NA-induced depression of facial stimulation-evoked MLI-PC GABAergic synaptic transmission was completely abolished by blockade of α-ARs or α2-ARs, but not by antagonism of α1-ARs or ß-ARs. Bath application of an α2-AR agonist inhibited MLI-PC synaptic transmission and attenuated the effect of NA on the synaptic response. NA-induced depression of MLI-PC synaptic transmission was completely blocked by a mixture of α2A- and 2B-AR antagonists, and was abolished by inhibition of protein kinase A. In addition, electrical stimulation of the molecular layer evoked MLI-PC GABAergic synaptic transmission in the presence of an AMPA receptor antagonist, which was inhibited by NA through α2-ARs. Our results indicate that NA inhibits MLI-PC GABAergic synaptic transmission by reducing GABA release via an α2-AR/PKA signaling pathway.


Subject(s)
Norepinephrine , Purkinje Cells , Animals , Mice , Norepinephrine/pharmacology , Signal Transduction , Synaptic Transmission , Interneurons , Cyclic AMP-Dependent Protein Kinases
2.
Article in English | MEDLINE | ID: mdl-29849718

ABSTRACT

To study the antitumor effect of Xihuang pill (XHP) on the number of Treg cells in the tumor microenvironment of 4T1 breast tumor-bearing mice by PI3K/AKT/AP-1 pathway, a mouse model was established. Flow cytometry (FCM) and immunohistochemistry (IHC) were used to detect the number of Treg cells in the tumor microenvironment; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect the apoptosis of Treg cells in tumor microenvironment. Quantitative real-time PCR (RT-qPCR) was used to detect the mRNA expression of PI3K, AKT, and AP-1 in Treg cells in tumor microenvironment; immunofluorescence (IF) and Western Blot (WB) were used to detect the protein expression of PI3K, AKT, and AP-1 in Treg cells in tumor microenvironment. Compared with the naive control group, the tumor weight in XHP groups decreased significantly (P < 0.05); FCM and IHC results showed that the number of Treg cells in the tumor microenvironment decreased with the dose of XHP groups (P < 0.05); TUNEL staining showed that the number of Treg cells in tumor microenvironment increased with the dose of XHP groups (P < 0.05); RT-qPCR results showed that the mRNA expression of PI3K and AKT in Treg cells decreased with the dose of XHP groups, while RNA expression of AP-1 increased with the dose of XHP groups (P < 0.05); IF and WB results showed that the protein expression of PI3K and AKT in Treg cells decreased with the dose of XHP groups and the protein expression of AP-1 increased with the dose of XHP groups (P < 0.05). The results suggested that XHP decreased the number of Treg cells via inhibiting PI3K and AKT expression and upregulating AP-1 expression in Treg cells and then promoting the apoptosis of Treg cells. Thus, XHP could improve the immunosuppressive state of tumor microenvironment and reverse the immune escape to inhibit tumor growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...