Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(42): 23214-23226, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37821455

ABSTRACT

Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.

2.
Chem Sci ; 14(34): 9207-9212, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655017

ABSTRACT

Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2'-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.

4.
J Am Chem Soc ; 142(43): 18687-18697, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33064473

ABSTRACT

Incorporating hidden length into polymer chains can improve their mechanical properties, because release of the hidden length under mechanical loads enables localized strain relief without chain fracture. To date, the design of hidden length has focused primarily on the choice of the sacrificial bonds holding the hidden length together. Here we demonstrate the advantages of adding mechanochemical reactivity to hidden length itself, using a new mechanophore that integrates (Z)-2,3-diphenylcyclobutene-1,4-dicarboxylate, with hitherto unknown mechanochemistry, into macrocyclic cinnamate dimers. Stretching a polymer of this mechanophore more than doubles the chain contour length without fracture. DFT calculations indicate that the sequential dissociation of the dimer, followed by cyclobutene isomerization at higher forces yields a chain fracture energy 11 times that of a simple polyester of the same initial contour length and preserves high energy-dissipating capacity up to ∼3 nN. In sonicated solutions cyclobutene isomerizes to two distinct products by competing reaction paths, validating the computed mechanochemical mechanism and suggesting an experimental approach to quantifying the distribution of single-chain forces under diverse loading scenarios.

5.
Angew Chem Int Ed Engl ; 59(49): 21980-21985, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827332

ABSTRACT

We demonstrate an intermolecular reaction cascade to control the force which triggers crosslinking of a mechanochromic polymer of spirothiopyran (STP). Mechanochromism arises from rapid reversible force-sensitive isomerization of STP to a merocyanine, which reacts rapidly with activated C=C bonds. The concentration of such bonds, and hence the crosslinking rate, is controlled by force-dependent dissociation of a Diels-Alder adduct of anthracene and maleimide. Because the adduct requires ca. 1 nN higher force to dissociate at the same rate as that of STP isomerization, the cascade limits crosslinking to overstressed regions of the material, which are at the highest rate of material damage. Using comb polymers decreased the minimum concentration of mechanophores required to crosslinking by about 100-fold compared to previous examples of load-strengthening materials. The approach described has potential for controlling a broad range of reaction sequences triggered by mechanical load.

6.
Nat Commun ; 11(1): 1678, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32235828

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
ACS Macro Lett ; 9(3): 344-349, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-35648539

ABSTRACT

It is appealing to develop dynamic polymer systems with multifunctionl properties. Herein, we report a polyurethane elastomer with a dynamic covalent polymer network containing a radically exchangeable 2-arylindane-l,3-dione dimer as thermally sensitive and reversible cross-links. In addition, the carbolong complex, an excellent photothermal agent, is incorporated into the dynamic network backbone. With the irradiation of NIR light, the carbolong complex rapidly generates thermal energy, which subsequently triggers the cleavage of the dynamic covalent bond to generate radicals and activate the polyurethane network. In proof-of-concept experiments, we demonstrate that the utility of a combination of radically exchangeable covalent bond and carbolong moiety brings multiple functional characteristics to the polymer network with a capability of spatiotemporal control, including thermochromism, photochromism, rewritability, malleability, and self-healing. This study holds potentials for exploring more tunable dynamics and improved material properties.

8.
Chem Sci ; 10(36): 8367-8373, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31803415

ABSTRACT

Multi-network elastomers are both stiff and tough by virtue of containing a pre-stretched stiff network that can rupture and dissipate energy under load. However, the rupture of this sacrificial network in all described covalent multi-network elastomers is irreversible. Herein, we describe the first example of multi-network elastomers with a reformable sacrificial network containing mechanochemically sensitive anthracene-dimer cross-links. These cross-links also make our elastomers mechanochromic, with coloration that is both persistent and reversible, because the fluorogenic moiety (anthracene dimer) is regenerated upon irradiation of the material. In proof-of-concept experiments we demonstrate the utility of incorporating anthracene dimers in the backbone of the sacrificial network for monitoring mechanochemical remodeling of multi-network elastomers under cycling mechanical load. Stretching or compressing these elastomers makes them fluorescent and irradiating them eliminates the fluorescence by regenerating anthracene dimers. Reformable mechanochromic cross-links, exemplified by anthracene dimers, hold potential for enabling detailed studies of the molecular origin of the unique mechanical properties of multi-network elastomers.

9.
Nat Commun ; 10(1): 5480, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792204

ABSTRACT

Covalently linked π-stacked dimers represent the most significant platform for elucidating the relationship between molecular alignments and their properties. Here, we present the one-pot synthesis of two intramolecularly π-stacked dimers and disclose how intramolecular stacking modes dictate photoswitching properties. The dimer, which features cofacially stacked chromophores and geometrically favours intramolecular photochemical [2 + 2] cycloadditions, displays a nearly irreversible photoswitching behaviour. By contrast, the dimer, bearing crosswise stacked chromophores, is geometrically unfavourable for the cycloaddition and exhibits a highly reversible photoswitching process, in which the homolysis and reformation of carbon-carbon single bonds are involved. Moreover, the chiral carbon centres of both dimers endow these photoswitches with chirality and the separated enantiomers exhibit tuneable chiroptical properties by photoswitching. This work reveals that intramolecular stacking modes significantly influence the photochemical properties of π-stacked dimers and offers a design strategy toward chiral photoswitchable materials.

10.
Chem Asian J ; 13(19): 2934-2938, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30070040

ABSTRACT

A pair of interconvertible stereoisomers of imide-fused corannulene derivatives was mixed with C60 , which resulted in cocrystallization into a 1:1 segregated packing motif through concave-convex π-π interactions. Only one conformation was observed in the cocrystal owing to guest-induced conformational switching. The 1D assemblies of the complex showed promising applications in organic electronics.

11.
Nat Commun ; 8(1): 1147, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079772

ABSTRACT

Mechanochemistry offers exciting opportunities for molecular-level engineering of stress-responsive properties of polymers. Reactive sites, sometimes called mechanophores, have been reported to increase the material toughness, to make the material mechanochromic or optically healable. Here we show that macrocyclic cinnamate dimers combine these productive stress-responsive modes. The highly thermally stable dimers dissociate on the sub-second timescale when subject to a stretching force of 1-2 nN (depending on isomer). Stretching a polymer of the dimers above this force more than doubles its contour length and increases the strain energy that the chain absorbs before fragmenting by at least 600 kcal per mole of monomer. The dissociation produces a chromophore and dimers are reformed upon irradiation, thus allowing optical healing of mechanically degraded parts of the material. The mechanochemical kinetics, single-chain extensibility, toughness and potentially optical properties of the dissociation products are tunable by synthetic modifications.

12.
Angew Chem Int Ed Engl ; 55(9): 3040-4, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26805709

ABSTRACT

Incorporation of small reactive moieties, the reactivity of which depends on externally imposed load (so-called mechanophores) into polymer chains offers access to a broad range of stress-responsive materials. Here, we report that polymers incorporating spirothiopyran (STP) manifest both green mechanochromism and load-induced addition reactions in solution and solid. Stretching a macromolecule containing colorless STP converts it into green thiomerocyanine (TMC), the mechanically activated thiolate moiety of which undergoes rapid thiol-ene click reactions with certain reactive C=C bonds to form a graft or a cross-link. The unique dual mechanochemical response of STP makes it of potentially great utility both for the design of new stress-responsive materials and for fundamental studies in polymer physics, for example, the dynamics of physical and mechanochemical remodeling of loaded materials.

13.
Top Curr Chem ; 369: 135-207, 2015.
Article in English | MEDLINE | ID: mdl-25791486

ABSTRACT

Although existing since the concept of macromolecules, polymer mechanochemistry is a burgeoning field which attracts great scientific interest in its ability to bias conventional reaction pathways and its potential to fabricate mechanoresponsive materials. We review here the effect of topology on the mechanical degradation of polymer chains and the activation of mechanophores in polymer backbones. The chapter focuses on both experimental and theoretical work carried out in the past 70 years. After a general introduction (Sect. 1), where the concept, the history, and the application of polymer mechanochemistry are briefly described, flow fields to study polymer mechanochemistry are discussed (Sect. 2), results of mechanochemistry study are presented for linear polymers (Sect. 3), cyclic polymers (Sect. 4), graft polymers (Sect. 5), star-shaped polymers (Sect. 6), hyperbranched polymers and dendrimers (Sect. 7), and systems with dynamic topology (Sect. 8). Here we focus on (1) experimental results involving the topological effect on the coil-to-stretch transition and the fracture of the polymer chains, (2) the underlying mechanisms and the key factor that determines the mechanical stability of the macromolecules, (3) theoretical models that relate to the experimental observations, and (4) rational design of mechanophores in complex topology to achieve multiple activations according to the existing results observed in chain degradation.

14.
ACS Macro Lett ; 3(2): 141-145, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-35590494

ABSTRACT

A mechanically active spiropyran (SP) mechanophore is incorporated into the backbone of prepolymer which is further end-capped with ureidopyrimidinone (UPy) or urethane. Strong mechanochromic reaction of SP arises in the bulk films of UPy containing materials whereas much weaker activation occurs in urethane containing counterparts, coincident with their stress-strain responses. The difference in the magnitudes of supramolecular interactions leads to different degrees of chain orientation and strain induced crystallization (SIC) in the bulk and consequently distinct capabilities to transfer the load to the mechanophores. This study may aid the design of novel mechanoresponsive materials whose mechanoresponsiveness can be tailored by tuning supramolecular interactions.

15.
ACS Macro Lett ; 2(8): 705-709, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-35606956

ABSTRACT

A mechanically active spiropyran (SP) mechanophore is incorporated into the center of poly(n-butyl acrylate) (PnBA) block to construct a series of mechanoresponsive polystyrene (PS)-PnBA-SP-PnBA-PS triblock copolymers. Similar mechanical activations of SP occur in all of the copolymers in solution, whereas a unique PS fraction-dependent mechanochromism is observed in the bulk. Effective mechanical activation occurs in the copolymer with a medium PS block length, whereas a very weak color change is observed in the samples bearing low PS fractions and activation appears only in the vicinity of the fracture point in the copolymer bearing long PS blocks. The difference in chemical compositions of the triblock copolymers leads to different microphase separated structures in the bulk and consequently the unique stress-strain responses and mechanochemistry. This platform promises to open way to the design of a wide range of useful mechanoresponsive triblock copolymers having different hard/soft blocks and various types of mechanoresponsive motifs.

16.
J Mater Chem B ; 1(37): 4809-4818, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-32261162

ABSTRACT

The development of polymer materials that exhibit excellent mechanical properties and can respond to environmental stimuli is of great scientific and commercial interest. In this work, we report a series of biomimetic supramolecular polymers using a ligand macromolecule carrying multiple tridentate ligand 2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) units synthesized via CuAAC in the polymer backbone together with transition and/or lanthanide metal salts. The metal-ligand complexes phase separate from soft linker segments, acting as physical crosslinking points in the materials. The metallo-supramolecular films exhibit superb mechanical properties, i.e., high tensile strength (up to 18 MPa), large strain at break (>1000%) and exceptionally high toughness (up to 70 MPa), which are much higher than those of the ligand macromolecule and are tunable by adjusting the stoichiometric ratio of Zn2+ to Eu3+ and the stoichiometry of metal ion to ligand. The metal-ligand hard phase domains are demonstrated to be thermally stable but mechanically labile, similar to the behaviors of covalent mechanophores. The thermal stability and mechanical responsiveness are also dependent on the compositions of metal ions. The disruption of the hard phase domains and the dissociation of metal-ligand complexes under stretching are similar to the unfolding of modular domains in modular biomacromolecules and are responsible for the superb mechanical properties. In addition, the biomimetic metallo-supramolecular materials display promising responsive properties to UV irradiation and chemicals. These well designed, created and characterized robust structures will inspire further accurate tailoring of biomimetic responsive materials at the molecular level and/or nanoscale.

17.
J Am Chem Soc ; 132(34): 12051-8, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20698543

ABSTRACT

An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.


Subject(s)
Imides/chemistry , Polyurethanes/chemistry , Hydrogen Bonding , Imides/chemical synthesis , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Models, Molecular , Molecular Structure , Polyurethanes/chemical synthesis , Stereoisomerism
18.
J Am Chem Soc ; 128(35): 11663-72, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16939292

ABSTRACT

Utilizing metal-ligand binding as the driving force for self-assembly of a ditopic ligand, which consists of a 2,6-bis-(1'-methylbenzimidazolyl)-4-oxypyridine moiety attached to either end of a penta(ethylene glycol) core, in the presence of a transition metal ion (Zn(II)) and a lanthanide metal ion (La(III)), we have achieved formation of stimuli-responsive metallo-supramolecular gels. We describe herein a series of experimental studies, including optical and confocal microscopy, dynamic light scattering, wide-angle X-ray diffraction, and rheology, to explore the properties of such gels, as well as the nature of the gelation mechanism. Morphological and X-ray diffraction observations suggest gelation occurs via the flocculation of semicrystalline colloidal particles, which results in the gels exhibiting pronounced yielding and thixotropic behavior. Application of mechanical stress results in a decrease in the particle size, which is accompanied by an increase in gel strength after removal of the stress. Moreover, studies show that the presence of lanthanide(III) perchlorate increases the mechano-responsiveness of the gels, as a consequence of reduced crystallinity of the colloidal particles, presumably due to the different coordination ability of lanthanide(III) and zinc(II), which changes the nature of the self-assembly in these materials.


Subject(s)
Metals/chemistry , Polymers/chemical synthesis , Acetonitriles/chemistry , Crystallization , Electrolytes/chemistry , Gels , Hydrogen Bonding , Molecular Structure , Particle Size , Polymers/chemistry , Pyrimidines/chemistry , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...