Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Microorganisms ; 11(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630593

ABSTRACT

The soil microbiome is an important component of wetland ecosystems and plays a pivotal role in nutrient cycling and climate regulation. Nitrogen (N) addition influences the soil's microbial diversity, composition, and function by affecting the soil's nutrient status. The change in soil bacterial diversity and composition in temperate wetland ecosystems in response to high ammonium nitrogen additions remains unclear. In this study, we used high-throughput sequencing technology to study the changes of soil bacterial diversity and community structure with increasing ammonium concentrations [CK (control, 0 kg ha-1 a-1), LN (low nitrogen addition, 40 kg ha-1 a-1), and HN (high nitrogen addition, 80 kg ha-1 a-1)] at a field experimental site in the Sanjiang Plain wetland, China. Our results showed that except for soil organic carbon (SOC), other soil physicochemical parameters, i.e., soil moisture content (SMC), dissolved organic nitrogen (DON), total nitrogen (TN), pH, ammonium nitrogen (NH4+), and dissolved organic carbon (DOC), changed significantly among three ammonium nitrogen addition concentrations (p < 0.05). Compared to CK, LN did not change soil bacterial α-diversity (p > 0.05), and HN only decreased the Shannon (p < 0.05) and did not change the Chao (p > 0.05) indices of soil bacterial community. Ammonium nitrogen addition did not significantly affect the soil's bacterial community structure based on non-metric multidimensional scaling (NMDS) and PERMANOVA (ADONIS) analyses. Acidobacteriota (24.96-31.11%), Proteobacteria (16.82-26.78%), Chloroflexi (10.34-18.09%), Verrucomicrobiota (5.23-11.56%), and Actinobacteriota (5.63-8.75%) were the most abundant bacterial phyla in the soils. Nitrogen addition changed the complexity and stability of the bacterial network. SMC, NO3-, and pH were the main drivers of the bacterial community structure. These findings indicate that enhanced atmospheric nitrogen addition may have an impact on bacterial communities in soil, and this study will allow us to better understand the response of the soil microbiome in wetland ecosystems in the framework of increasing nitrogen deposition.

2.
ACS Appl Mater Interfaces ; 15(17): 21435-21443, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37073628

ABSTRACT

Microstructures can effectively improve the sensing performance of flexible piezocapacitive sensors. Simple, low-cost fabrication methods for microstructures are key to facilitating the practical application of piezocapacitive sensors. Herein, based on the laser thermal effect and the thermal decomposition of glucose, a rapid, simple, and low-cost laser direct-printing process is proposed for the preparation of a polydimethylsiloxane (PDMS)-based electrode with a hybrid microstructure. Combining the PDMS-based electrode with an ionic gel film, highly sensitive piezocapacitive sensors with different hybrid microstructures are realized. Due to the good mechanical properties brought about by the hybrid microstructure and the double electric layer induced by the ionic gel film, the sensor with a porous X-type microstructure exhibits an ultrahigh sensitivity of 92.87 kPa-1 in the pressure range of 0-1000 Pa, a wide measurement range of 100 kPa, excellent stability (>3000 cycles), fast response time (100 ms) and recovery time (101 ms), and good reversibility. Furthermore, the sensor is used to monitor human physiological signals such as throat vibration, pulse, and facial muscle movement, demonstrating the application potential of the sensor in human health monitoring. Most importantly, the laser direct-printing process provides a new strategy for the one-step preparation of hybrid microstructures on thermal curing polymers.

3.
Microorganisms ; 11(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36985214

ABSTRACT

Biochar is increasingly being used for soil improvement, but the effects on microbial diversity in soil are still ambiguous due to contrasting results reported in the literature. We conducted a meta-analysis to clarify the effect of biochar addition on soil bacterial and fungal diversity with an increase in Shannon or Chao1 index as the outcome. Different experimental setups, quantitative levels of biochar addition, various biochar source materials and preparation temperatures, and the effect of natural precipitation in field experiments were the investigated variables. From a total of 95 publications identified for analysis, 384 datasets for Shannon index and 277 datasets for Chao1 index were extracted that described the bacterial diversity in the soils, of which field experiments and locations in China dominated. The application of biochar in soil significantly increased the diversity of soil bacteria but it had no significant effect on the diversity of fungi. Of the different experimental setups, the largest increase in bacterial diversity was seen for field experiments, followed by pot experiments, but laboratory and greenhouse settings did not report a significant increase. In field experiments, natural precipitation had a strong effect, and biochar increased bacterial diversity most in humid conditions (mean annual precipitation, MAP > 800 mm), followed by semi-arid conditions (MAP 200-400 mm). Biochar prepared from herbaceous materials was more effective to increase bacterial diversity than other raw materials and the optimal pyrolysis temperature was 350-550 °C. Addition of biochar at various levels produced inconclusive data for Chao1 and Shannon indices, and its effect was less strong than that of the other assessed variables.

4.
Ecol Evol ; 12(11): e9535, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36440312

ABSTRACT

Bacteria are a crucial component of forest soil biodiversity and play an important role in numerous ecosystem processes. Here, we studied the patterns of soil bacterial community diversity and structure in a climax forest (Larix gmelinii; LG) compared with those in degraded forest ecosystems of four forest vegetation types (BD, Betula dahurica; BP, Betula platyphylla; QM, Quercus mongolica; and LGQM, a mixed coniferous-broadleaved forest composed of Larix gmelinii and Quercus mongolica) in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve in northern China, using Illumina MiSeq sequencing of 16 S rRNA genes. Soil physicochemical properties (pH, soil organic carbon = SOC, total nitrogen = TN, carbon/nitrogen = C/N, total phosphorous = TP, available nitrogen = AN, available phosphorous = AP) differed significantly (p < .05) among the five forests. SOC, C/N, TP, AN, and AP were highest in QM, whereas SOC was lowest in LGQM. Soil pH was lowest in BD and highest in LGQM. α diversity was highest in LG and lowest in QM. The soil bacterial community composition in the climax forest was significantly different from that in the four degraded forests (p < .05). The dominant bacterial phyla were Acidobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Firmicutes, Chloroflexi, and Rokubacteria. The highest relative abundances of these phyla were: 30.7% for Acidobacteria in LGQM, 42.6% for Proteobacteria in LG, 17.6% for Verrucomicrobia in BD, 5.5% for Firmicutes in BP, and 6.9% for Actinobacteria in QM. The dominant bacterial genera across the five forest vegetation types were Bryobacter and some poorly characterized taxa (e.g., Candidatus_Udaeobacter and Candidatus_Solibacter). Redundancy analysis indicated that SOC, C/N, TP, AN, and AP were the main soil physicochemical properties that shaped the bacterial communities. Our study revealed distinct bacterial diversity and composition in the climax forest compared with values in degraded forests, suggesting that the biotic and abiotic factors associated with climax ecosystems play an important role in shaping soil bacterial community structure and thus biogeochemical functions. The results of this study contribute to a deeper understanding and better predictions of the network among belowground systems and of the functions and services of degraded forests compared with climax ecosystems.

5.
Huan Jing Ke Xue ; 43(9): 4674-4683, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096608

ABSTRACT

Atmospheric nitrogen deposition has a crucial impact on the structure and function of soil microorganisms of wetland ecosystems. Therefore, carrying out a study on the effects of soil carbon metabolism capacity has a great significance for the protection and utilization of wetland ecosystems. In this study, the effects of simulated nitrogen deposition on the carbon metabolic capacity of soil microorganisms in Calamagrostis angustifolia wetland for five consecutive years was investigated using Biolog-Eco technology. The results showed:① soil water content (SMC), pH, nitrate nitrogen (NO3-), ammonium nitrogen (NH4+), dissolved organic carbon (DOC), and total nitrogen (TN) contents were significantly different (P<0.05) under different nitrogen deposition conditions. ② The average well color development (AWCD) values of soil microorganisms within different N depositions were in the order of CK (control)>HN (high nitrogen treatment)>LN (low nitrogen treatment). LN significantly reduced the Shannon diversity index of soil microorganisms, and HN significantly reduced the Pielou index of soil microorganisms (P<0.05). ③ LN significantly inhibited the intensity of the utilization of carbohydrates, alcohols, amines, and acids by soil microorganisms (P<0.05); HN significantly promoted the utilization of esters by microorganisms, but HN caused soil microorganisms to inhibit the carbon sources of carbohydrates, amines, and acids (P<0.05). ④ Redundancy analysis showed that NH4+, DOC, and pH were the main environmental factors affecting the functional diversity of soil microbial communities in Calamagrostis angustifolia wetland in the Sanjiang Plain. Long-term nitrogen deposition will lead to the reduction in soil microbial functional diversity; the microbial activity related to the utilization of carbon source substrates is also significantly reduced, and the ability of microorganisms to utilize a single carbon source substrate also changes.


Subject(s)
Nitrogen , Soil , Amines/metabolism , Carbohydrates , Carbon/chemistry , Ecosystem , Nitrogen/analysis , Poaceae , Soil/chemistry , Soil Microbiology , Wetlands
6.
Microorganisms ; 10(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35456878

ABSTRACT

This study assessed the effects of Betula dahurica (BD), Betula platyphylla (BP), Larix gmelinii (LG), Quercus mongolica (QM), and a mixed conifer-broadleaf forest composed of LG and QM (LGQM) on the soil physicochemical parameters and community structure of fungi in the Zhongyangzhan Black-billed Capercaillie Nature Reserve. Fungal community structures were characterized via ITS rRNA sequencing. The effects of soil parameters on the community structure of soil fungi were assessed by Pearson correlation analysis and redundancy analysis (RDA). LGQM exhibited lower C/N, available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) compared with the QM broadleaf forest. The fungal Shannon and Simpson diversity indices were highest in BP, whereas LG exhibited the highest ACE index. The Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota fungal phyla were dominant across all vegetation types. Each of the different vegetation types studied herein exhibited a unique fungal community structure. The RDA results indicated that fungal community structures were primarily shaped by the total N, available N, and available P of soil. Our findings thus indicated that forests restored with different species of trees may exhibit variations in soil quality and characteristics despite sharing the same climate. Furthermore, broadleaved and coniferous forests exhibited a unique fungal community diversity and composition.

7.
Eur J Hosp Pharm ; 29(2): 101-108, 2022 03.
Article in English | MEDLINE | ID: mdl-33472817

ABSTRACT

BACKGROUND: In the neonatal population, individual calculation and adjustment of vancomycin (VCM) doses has been recommended based on population pharmacokinetics (PPK) methods. OBJECTIVE: Our previous study established a Chinese neonatal VCM PPK model. The main goal of this study was to evaluate the predictive performance of this PPK model for VCM trough concentration. METHODS: The data on neonatal severe infection patients treated with VCM were retrospectively collected. The predictive performance of this PPK model was expressed using mean prediction error (MPE), mean absolute prediction error (MAPE), sensitivity and specificity. Linear regression analysis was used to compare predicted and measured VCM concentrations. We drew the receiver operating characteristic (ROC) curve to evaluate the predictive efficacy of the ratio of area under the concentration-time curve over 24 hours to minimum inhibitory concentration (AUC0-24/MIC) and trough concentration for clinical efficacy. RESULTS: A total of 40 neonates with Gram-positive bacterial sepsis were included. After VCM treatment, 32 (80%) neonates were clinically cured. Eight cases were a clinical failure: the trough concentrations and AUC0-24 were lower than that of the clinical cure patients (8.70±4.30 vs 14.30±4.50 mg/L, p=0.003; 404.30±122.80 vs 515.40±131.70, p=0.037). The measured and predicted trough concentration were 11.16 (5.96, 16.53) mg/L and 10.13 (6.61, 15.73) mg/L, respectively. The MPE and MAPE were 4.62% and 13.26% (5.30%, 25.88%), respectively. The proportion of MAPE <30% in the adjusted regimen was higher than the initial regimen (89.66% vs 65.00%, p=0.039). Predictions of sensitivity and specificity by this PPK model were 88.24% and 94.29%, respectively. The coefficients of determination of linear regression analysis were 0.9171 and 0.9009 for the initial and adjusted regimen, respectively. The AUC0-24 was correlated with the trough concentration (r=0.587, p<0.001). The ROC curve indicated that the optimal cut-off points for predicting clinical efficacy were AUC0-24/MIC >425.47 and trough concentration >9.45 mg/L. CONCLUSION: This PPK model has good predictive performance in Chinese neonatal patients. Both AUC0-24/MIC and trough concentration can predict the clinical efficacy of antibacterial treatment.


Subject(s)
Neonatal Sepsis , Vancomycin , China/epidemiology , Humans , Infant, Newborn , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Retrospective Studies , Treatment Outcome , Vancomycin/pharmacokinetics
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(2): 264-7, 276, 2009 Apr.
Article in Chinese | MEDLINE | ID: mdl-19499783

ABSTRACT

To meet the demands of managing international academic conferences on Biomedical Engineering, a management system was designed and implemented based on Internet. The system was aimed to implement the cooperation of different departments to manage common affair and academic papers of the conference together. In addition, it could be connected to the membership management system of Chinese Society of Biomedical Engineering. With its advanced, practical, humanized and expansible characteristics, the system performed seven main functions, including the management in general information, participant information, papers, reviewer information, booking, exhibition and manager information. The system proved to be feasible and optimized as well in the 7th Asia-Pacific Conference on Medical and Biological Engineering.


Subject(s)
Biomedical Engineering , Computer Communication Networks , Congresses as Topic/organization & administration , Information Services , Humans , International Cooperation , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...