Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(22): 17074-17082, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34702033

ABSTRACT

Although pristine metal-organic framework (MOF) anodes for lithium-ion batteries (LIBs) show moderate activities and relatively stable cycling, the poor rate capability of the MOF anodes limited their applications in the development of a new generation of energy storage. Herein, the electric active CoII ion is selected to coordinate with redox-active S-rich tetrathiafulvalene (TTF) derivatives to create two TTF-Co-MOFs, formulated as [Co2(py-TTF-py)2(BDC)2]·2DMF·H2O (TTF-Co-MOF 1) and [Co2(py-TTF-py)2(BPDC)2]·3DMF·3H2O (TTF-Co-MOF 2), where py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene, H2BDC = terephthalic acid, H2BPDC = biphenyl-4,4'-dicarboxylic acid, and DMF = N,N-dimethylformamide. Crystallographic characterization indicated that the two MOFs possess similar 2-fold-interpenetrating 3D frameworks but with two different pore sizes. The pore-size-dependent performances of the TTF-Co-MOFs were explored to optimize the MOFs as the anode materials for LIBs. TTF-Co-MOF 1 presents a high reversible specific capacity of 1186.6 mAh g-1 at 200 mA g-1 after 287 cycles. The rate capability is greatly enhanced by the introduction of CoII into TTF-based MOFs with specific capacities of 1028.6 mAh g-1 at 5 A g-1 and 966.5 mAh g-1 at 10 A g-1. On the basis of the series analysis of theoretical calculations, electrochemical impedance spectroscopy, and crystal structures, it is found that the CoII metal centers play a bridging role in charge transport within the MOF framework, which is beneficial for the transportation of Li ions. The competitive performances of TTF-Co-MOF 1 are attributed to the synergistic effect of the CoII metal centers and S-rich TTF ligand as well as suitable porosity. The study shed some light for the fabrication of advanced energy storage devices through the rational design of MOF-based anode materials.

2.
Dalton Trans ; 50(23): 8120-8126, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34021298

ABSTRACT

Introducing electronically active organic components into lower dimensional metal halide compounds is an effective strategy to improve the electronic properties of hybrid metal halide materials. We have previously used this strategy to explore hybrid halides with tetrathiafulvalenes (TTFs) and a series of lead iodides and bismuth halides were isolated. The electronic properties were improved notably using this modification. In this work, we expand the study of TTF based main-group metal halides to double metal halides with mixed lead and copper transition metals. Two hybrid TTF-lead-cuprous iodides, formulated as [TTF]5[Pb2Cu2I10]·H2O (1) and [TTF]2[PbCu2I6] (2), and two monometal analogues of [TTF]2[Cu4I6]·H2O (3) and [TTF]2[Ag4I6] (4) were crystallographically characterized. The anion of 1 is a 0D cluster, while that of the others is a 1D chain structure. The anion structures of 1-4 are novel and are reported for the first time. The TTF moieties are stacked to form a 2D framework in 1 and 1D columns in 2-4. We found that the semiconductor properties of the hybrids are related to electron donation from an anion to a cation. The electronic state of the TTF cations is another significant factor that affects the electronic properties of the materials. More notably, this work proved that the conductivity and photoconductivity of the mixed metal iodides are superior to those of the monometal iodides.

3.
ACS Appl Mater Interfaces ; 12(47): 52615-52623, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170613

ABSTRACT

Metal-organic frameworks (MOFs) have aroused great interest as lithium-ion battery (LIB) electrode materials. In this work, we first report that a pristine three-dimensional tetrathiafulvalene derivatives (TTFs)-based zinc MOF, formulated [Zn2(py-TTF-py)2(BDC)2]·2DMF·H2O (1) (py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene and H2BDC = terephthalic acid), can work as a high-performance electrode material for rechargeable LIBs. The TTFs-Zn-MOF 1 electrode displayed a high discharge specific capacity of 1117.4 mA h g-1 at a current density of 200 mA g-1 after 150 cycles along with good reversibility. After undergoing elevated discharging/charging rates, the electrode showed superior lithium storage performance in the extreme case of 20 A g-1 and could finally recover the capability when the current rate was back to 200 mA g-1. Particularly, specific capacities of 884.2, 513.8, and 327.8 mA h g-1 were reached at high current densities of 5, 10, and 20 A g-1 after 180, 175, and 300 cycles along with good reversibility, respectively. Such an excellent performance is first reported for the LIB anode materials. TTFs-Zn-MOF 2, namely, [Zn2(py-TTF-py) (BDC)2]·DMF·2H2O (2), was prepared as a contrast to explore the relationship between the structures of the electrode materials and the electrochemical properties. Based on the structural analysis of 1 and 2 and ex situ X-ray photoelectron spectroscopy, the TTF moiety and the twofold TTF pillar play a key role in the excellent electrochemical performance. The full cell of MOF 1 with NMC 622 delivered the capacity of 131.9 mA h g-1 at 100 mA g-1 with the Coulombic efficiency of 99.45% after 70 cycles and exhibited the tolerance to high-current operation.

4.
Inorg Chem ; 59(21): 15842-15847, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33048518

ABSTRACT

Hybrid halide perovskites featuring as new materials of high-performance solar cells have attracted great research interest. The temperature-dependent dimensional transition of halide perovskites is a crucial handle in the preparation of perovskite films. Only the small cations of methylammonium (MA) or formamidinium (FA) have been involved for most of the dimensional transition materials. In this work, thiourea (tu) is introduced into hybrid halide materials. A new series of 1D ribbonlike hybrid lead iodides with tu and MA cations are reported that were crystallographically characterized as MAn(Htu)n+1PbnI4n+1 (n = 1-4 denoted as 1-4, respectively; in 1, MA is replaced by tu). The width of the perovskite ribbon increases from one PbI6 octahedron to four corner-fused octahedra. Compounds 2 and 3 can be turned into a black 3D perovskite after annealing. This is an unusual mixed MA-tu hybrid halide perovskite system, in which the tu molecule plays an important role in manipulating the dimensions and their photoconductive properties. Scanning electron microscopy of the blackened sample shows that there are a lot of regular vent holes on the smooth crystal surface with sizes of hundreds of nanometers. The tunable structures and porous crystals might be advantageous in the sense of material modulation.

5.
Inorg Chem ; 59(15): 10727-10735, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32686407

ABSTRACT

Understanding the effect of charge transfer on the physical properties of metal-organic frameworks (MOFs) is essential for designing multifunctional MOF materials. In this work, three redox-active tetrathiafulvalene (TTF)-based MOFs, formulated as [Co6L6(bpe)6(EtOH)2(MeOH)2(H2O)]n·5nH2O (1), [Co5(µ3-OH)2L4(bpe)2]n (2), and [CoL(bpa)(H2O)]n·2nH2O (3) (L = dimethylthio-tetrathiafulvalene-bicarboxylate, bpe = 1,2-bis(4-pyridyl)ethene, bpa = 1,2-bis(4-pyridyl)ethane), are crystallographically characterized. Complexes 1 and 3 are two-dimensional (2D) coordination polymers, and 2 features an unusual three-dimensional (3D) MOF. The structure of 2 contains a cluster chain constructed from µ2-O bridged pentanuclear cluster subunits, which is first found for 3D MOFs. Complexes 1 and 2 are comprised of the same ligands L and bpe but with different multidimensional configuration, and complexes 1 and 3 have the same 2D layered structures with the same ligand L but with different conjugation ligand bpe/bpa, which provide a good comparison for the structure-property relationship. The charge-transfer (CT) interactions within MOF 1 are stronger than those of 2 due to the closer packing of electron donor (D) L and electron acceptor (A) bpe in 1, and no CT occurs within MOF 3 because of the unconjugated bpa. The order of photocurrent density is 1 > 2 ≫ 3, which is in accordance with that of CT interactions. Further analysis reveals that the CT interactions within the MOF are not beneficial for the supercapacitance which is verified by the highest supercapacitance performance of 3. This work is the first study of the structures and CT effects on the supercapacitance performance.

6.
Inorg Chem ; 59(7): 5161-5169, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32186867

ABSTRACT

Most large organic cations in the low-dimensional hybrid halide perovskites deteriorate the photoelectric conversion efficiency of the cells. Integrating electronically active organic components into hybrid metal halides is an effective method to improve their photoelectric properties. In this work, a series of compounds obtained by hybridizing redox-active tetrakis(methylthio)tetrathiafulvalene (TMT-TTF) with bismuth chloride, formulated as [TMT-TTF]4[Bi6Cl22] (1 and 1'), [TMT-TTF]3[Bi4Cl16] (2), [TMT-TTF]2[Bi3Cl13] (3), [TMT-TTF]2[Bi2Cl10] (4), and {[TMT-TTF][Bi2Cl8]}n (5), were crystallographically characterized. These hybrids exhibit changeable oxidation states of the TTF moiety. The radical cation TTF•+ exists in 1 and 1', while a mixed-valence TTF•+/TTF2+ appears in 2 that has never been documented in any compounds and the dication TTF2+ exists in 3-5 that has never been introduced into hybrid organic-inorganic materials. The different charged states of the TTF cations lead to various degrees of connectivity of metal chloride anions, which exert a significant effect on the cation-anion arrangement and result in different supramolecular interactions between TMT-TTF and between cations and anions. The changeable oxidation states of the TTF moiety and varying degrees of metal chloride connectivity provide a good comparison among these hybridized bismuth chlorides. The order of conductivity is 2 > 1 > 1' > 3 ≈ 4 ≫ 5, which results from the synergistic effect of different oxidation states, the packing of TMT-TTF cations, and back charge transfer from the Bi-Cl anion to the TMT-TTF cation. Notably, the electrical conductivity and carrier mobility can be modulated with the fact that compound 2 has the highest performances in the dark, while in light, these properties of 1 and 1' are in turn higher than that of 2. The order of the photocurrent densities is in accordance with the increase of carrier mobility under irradiation of light. This work is the first systematic study of hybrid metal halides with various oxidation states of TTFs and presents a clear structure-property relationship and offers a fresh view on the design of new perovskite materials at the molecular level.

7.
Inorg Chem ; 58(23): 15824-15831, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31710209

ABSTRACT

Inorganic CuSCN and organic tetrathiafulvalene derivatives (TTFs) have been exploited as hole-transport materials (HTM) in hybrid perovskite solar cells. To develop new HTM, we herein report two hybrid materials incorporating redox-active TTFs with CuSCN framework (TTFs-CuSCN). Single-crystal analysis showed that compound [Cu2(py-TTF-py)(SCN)2] (1) is three-dimensional (3D) and compound [Cu(py-TTF-py)(SCN)] (2) is two-dimensional (2D) (py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene). There are covalent coordination interactions between CuSCN and py-TTF-py and short S···S contacts between the py-TTF-py ligands for both compounds. Besides, C···S contacts exist between py-TTF-py ligands of the neighboring 2D networks in 2, which facilitate the charge transfer and supply efficient multidimensional pathways for carrier migration. As a result, 2 presented better semiconductor performance in comparison with that of 1. The performance of 2 related to the HTMs could be significantly improved by modulating the electronic state of the TTFs-CuSCN framework via oxidative doping. The iodine-doped 2D material (2-I2) gives the most excellent conductivity and carrier mobility, which might be a potential new HTM.

8.
Inorg Chem ; 58(4): 2736-2743, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30729787

ABSTRACT

Titanium oxo clusters (TOCs) have become one of the worldwide hot research topics because they are excellent molecular TiO materials having unique photoactive properties and can been used as models of dye-sensitized solar cells (DSSCs). S-Heterocyclic ligands such as thiophene (Th) and tetrathiafulvalene (TTF) derivatives have been widely used in electronic or photoelectronic devices and solar cells. However, a study of the synthesis and properties of TOCs anchored with Th and TTF derivatives is missing. Herein four such TOCs as single crystals were synthesized and structurally characterized: [Ti3O(OiPr)8(LTh)2] (1), [Ti4O2(OiPr)10(LTTF)2] (2), [Ti6O4(OiPr)10(LTh)2(O3PPh)2] (3), and [Ti6O4(OiPr)10(LTTF)2(O3PPh)2] (4). Charge transfer from the Th or TTF electron donor to the TOC core was evaluated by electronic spectra and theoretical calculations. This work first systematically investigated the photoelectrochemistry of TOCs with different conjugated S-heterocyclic ligands in molecular levels. The photocurrent densities of these cluster-modified TiO2 electrodes were examined using DSSCs, which were well responsive to irradiation. The photocurrents of TTF cluster-modified electrodes are higher than those of the Th cluster-modified electrodes because of the sulfur-rich conjugated system.

9.
Inorg Chem ; 57(17): 11113-11122, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30106568

ABSTRACT

Tetrathiafulvalene (TTF) derivatives as promising hole transport materials in assembling hybrid halide perovskite solar cells have attracted great attention; however, electron transfer or charge-transfer (CT) between TTF and metal halides has been studied with less detail at the molecular level. Using molecular models, we herein report four new TTF-bismuth-halides assembled by methylated or protonated bis(4'-pyridyl)-tetrathiafulvalene cations, (MePy)2TTF or (HPy)2TTF, and bismuth-halide anions. Single crystal analysis showed that the cations are stacked to form a TTF column, and the bismuth-halide anions are inlaid between the TTF columns with anion-cation interactions. In these compounds, the main contribution to CT is the intracation CT, namely intramolecular CT (IMCT) from TTF moiety to pyridinium group. However, the anion to cation CT (ACCT) has a significant effect on the IMCT and physical properties. The different anion-cation interaction modes result in different synergistic effects of IMCT and ACCT, which modified the band gaps and photocurrent properties of the hybrids. The research gives a clear image of structure-property relationship and provides a perspective on the design of new perovskite materials at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...