Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 725: 138195, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32305642

ABSTRACT

Our study underpins the mechanism of organo-mineral interaction between black carbon (BC, biochar) and associated minerals in the historical BC-rich Amazonian Dark Earth (ADE) by using synchrotron-based microscopic (TXM), microspectroscopic (µFTIR) and spectroscopic (XAS and µ-diffraction) approaches. The BC-rich ADE contained over 100% more poorly crystalline minerals than the adjacent tropical soil. Linear combination fitting of k-spacing in the X-ray Absorption Spectra (XAS) revealed that ferrihydrite contributed to 81.1% of the Fe-minerals in BC. A small but distinct peak was observed at 5.7 Å-1 in the extended X-ray absorption fine structure k oscillation of BC, revealing the presence of FeC (including Fe-O-C) covalent bonds. No FeC path was yielded by the XAS fitting when an obvious peak downshift of the first (FeFe1) shell was observed, suggesting that the availability of inner-sphere FeC complexation was limited to the BC surface and interphase region. The main minerals for organo-mineral complexation were short-range-order (SRO) ferrihydrite on BC instead of corner-sharing FeO6 octahedra. Compared to ADE, the coordination number of the first (FeFe1) and second (FeFe2) shell was higher in BC, revealing a higher degree of order in coordination between the neighboring Fe mineral crystals. Black C limited the progressive aging of amorphous Fe phases and greatly enriched SRO ferrihydrite in the redox-fluctuating and high-leaching environment. The transformation of SRO ferrihydrite into the more crystalline Fe oxides was controlled by the local pH environment. A strong signal from the complexed phenolic group (aryl-OH, 1241 cm-1) and a distinct band of inner-sphere complexation (Fe-aryl C, 1380-1384 cm-1) were identified in the FTIR spectra. The enrichment of poorly crystalline minerals can have positive feedback on the long-term stabilization of BC. The scale-up application of biochar to agricultural and ecological systems may have a long-lasting impact on the enrichment and transformation of the SRO minerals in the soil.

2.
Sci Rep ; 7(1): 3691, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623319

ABSTRACT

X-ray 3D tomographic techniques are powerful tools for investigating the morphology and internal structures of specimens. A common strategy for obtaining 3D tomography is to capture a series of 2D projections from different X-ray illumination angles of specimens mounted on a finely calibrated rotational stage. However, the reconstruction quality of 3D tomography relies on the precision and stability of the rotational stage, i.e. the accurate alignment of the 2D projections in the correct three-dimensional positions. This is a crucial problem for nano-tomographic techniques due to the non-negligible mechanical imperfection of the rotational stages at the nanometer level which significantly degrades the spatial resolution of reconstructed 3-D tomography. Even when using an X-ray micro-CT with a highly stabilized rotational stage, thermal effects caused by the CT system are not negligible and may cause sample drift. Here, we propose a markerless image auto-alignment algorithm based on an iterative method. This algorithm reduces the traditional projection matching method into two simplified matching problems and it is much faster and more reliable than traditional methods. This algorithm can greatly decrease hardware requirements for both nano-tomography and data processing and can be easily applied to other tomographic techniques, such as X-ray micro-CT and electron tomography.

SELECTION OF CITATIONS
SEARCH DETAIL
...