Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 41, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36740689

ABSTRACT

Clinically, activated EGFR mutation associated chemo-drugs resistance has severely threaten NSCLC patients. Nanoparticle based small interfering RNA (siRNA) therapy representing another promising alternative by silencing specific gene while still suffered from charge associated toxicity, strong immunogenicity and poor targetability. Herein, we reported a novel EGFR-mutant NSCLC therapy relying on edible and cation-free kiwi-derived extracellular vesicles (KEVs), which showed sevenfold enhancement of safe dosage compared with widely used cationic liposomes and could be further loaded with Signal Transducer and Activator of Transcription 3 interfering RNA (siSTAT3). siSTAT3 loaded KEVs (STAT3/KEVs) could be easily endowed with EGFR targeting ability (STAT3/EKEVs) and fluorescence by surface modification with tailor-making aptamer through hydrophobic interaction. STAT3/EKEVs with a controlled size of 186 nm displayed excellent stability, high specificity and good cytotoxicity towards EGFR over-expressing and mutant PC9-GR4-AZD1 cells. Intriguingly, the systemic administration of STAT3/EKEVs significantly suppressed subcutaneous PC9-GR4-AZD1 tumor xenografts in nude mice by STAT3 mediated apoptosis. This safe and robust KEVs has emerged as the next generation of gene delivery platform for NSCLC therapy after multiple drug-resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , RNA, Small Interfering/chemistry , Mice, Nude , Fruit/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Nanoscale Adv ; 4(23): 5021-5026, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36504744

ABSTRACT

Hypoxia, a characteristic hallmark of solid tumours, restricts the therapeutic effect of photodynamic therapy (PDT) for cancer treatment. To address this issue, a facile and nanosized oxygen (O2) bubble template is established by mixing oxygenated water and water-soluble solvents for guiding hollow polydopamine (HPDA) synthesis, and O2 is encapsulated in the cavity of HPDA. HPDA with abundant catechol is designed as a carrier for zinc phthalocyanine (ZnPc, a boronic acid modified photosensitizer) via borate ester bonds to fabricate nanomedicine (denoted as HZNPs). The in vitro and in vivo results indicate that O2-evolving HZNPs could alleviate tumour hypoxia and enhance PDT-anticancer efficiency. Melanin-like HPDA with a photothermal conversion rate (η) of 38.2% shows excellent synergistic photothermal therapy (PTT) efficiency in cancer treatment.

3.
Cancer Gene Ther ; 28(5): 400-412, 2021 05.
Article in English | MEDLINE | ID: mdl-33057139

ABSTRACT

Encouraging insight into novel underlying mechanisms targeting abnormal biological pathways in colorectal cancer (CRC) are currently under investigation, edging closer and closer to clinical use. Of note, basic leucine zipper ATF-like transcription factor 3 (BATF3) has been implicated with the tumorigenicity of CRC. The current study aimed to elucidate the oncogenic BATF3-mediated S1PR1/p-STAT3/miR-155-3p/WDR82 axis in CRC. Initially, clinical samples of CRC tissues as well as CRC cell lines were collected to evaluate the expression patterns of BATF3/S1PR1/p-STAT3/miR-155-3p/WDR82. Dual luciferase assay was employed to assess the binding affinity between miR-155-3p and WDR82. Artificial modulation of BATF3 (down- and overexpression) was conducted to measure the malignant phenotypes of CRC cells, while tumor-bearing mice were examined to determine the in vivo effects. BATF3 facilitated the proliferative, migratory, and invasive potential of CRC cells by upregulating S1PR1. Besides, the stimulatory effect of S1PR1 was realized via restored p-STAT3 expression. Furthermore, p-STAT3 was evidenced to heighten the expression of miR-155-3p and subsequently restrict the expression of its target gene WDR82. The in vivo assays provided data further substantiating the in vitro findings that inactivation of the BATF3/S1PR1/p-STAT3/miR-155-3p/WDR82 axis suppresses CRC tumor growth. Collectively, the results of the present study emphasize the oncogenic function of BATF3 illustrated by the reinforcement the biological processes of proliferation, invasion, as well as the metastatic capacity of CRC cells through activating the S1PR1/p-STAT3/miR-155-3p/WDR82 axis.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Repressor Proteins/metabolism , STAT3 Transcription Factor/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Basic-Leucine Zipper Transcription Factors/genetics , Cell Proliferation , Chromosomal Proteins, Non-Histone/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , Repressor Proteins/genetics , STAT3 Transcription Factor/genetics , Sphingosine-1-Phosphate Receptors/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...