Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 86(3): 617-27, 2010.
Article in English | MEDLINE | ID: mdl-20408973

ABSTRACT

We have previously shown that 870 nm/930 nm wavelengths cause photodamage at physiologic temperatures in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli via generation of endogenous radical oxygen species (ROS) and decreased plasma membrane potentials (Delta Psi p). We tested MRSA (Strain HSJ216) in vitro with sublethal 870 nm/930 nm laser energy and subinhibitory concentrations of erythromycin, tetracycline, penicillin, rifampin and trimethoprim to surmise whether photodamage could potentiate these antimicrobials. We also tested patient isolates of fluoroquinolone-resistant MRSA and E. coli with subinhibitory concentrations of ciprofloxacin. In MRSA (Strain HSJ216) we observed 97% potentiation (a 1.5 log(10) CFU decrease) with erythromycin and tetracycline. In patient isolates of E. coli, we observed 100% potentiation (>3 log(10) CFU decrease) in all irradiated samples with ciprofloxacin. To assess whether staphyloxanthin pigment conferred protection against the generated ROS, we created an isogenic carotenoid-deficient mutant of S. aureus that was significantly less tolerant of 870 nm/930 nm exposure than the wild type strain (P < 0.0001). We suggest that antibiotic potentiation results from a photobiological attenuation of ATP-dependent macromolecular synthetic pathways, similar to that observed with daptomycin, via disruption of Delta Psi p and endogenous generation of ROS. With erythromycin, tetracycline and ciprofloxacin, attenuation of energy-dependent efflux systems is also a possibility.


Subject(s)
Anti-Infective Agents/pharmacology , Gram-Negative Bacteria/radiation effects , Gram-Positive Bacteria/radiation effects , Ciprofloxacin/pharmacology , Erythromycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/radiation effects , Tetracycline/pharmacology
2.
J Struct Biol ; 162(1): 152-69, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18086534

ABSTRACT

In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality--they only diffracted X-rays to 3-5A resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2A or better. This methodology is discussed and contrasted with the more traditional domain truncation approach.


Subject(s)
Bacterial Proteins/chemistry , Phenylalanine-tRNA Ligase/chemistry , Staphylococcus haemolyticus/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray/methods , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutagenesis , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylalanine-tRNA Ligase/metabolism , Protein Engineering/methods , Protein Structure, Secondary , Protein Structure, Tertiary , Staphylococcus haemolyticus/genetics
3.
Protein Expr Purif ; 52(2): 313-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17169570

ABSTRACT

The membrane-anchored metalloproteinase ADAM17 (TNF-alpha converting enzyme; TACE; EC 3.4.24.86) continues to be an attractive drug target in inflammatory diseases and cancer. Cocrystallization of its catalytic domain with a lead compound was complicated by the tenacious retention of the prodomain that has been shown to be enhanced if ADAM17 is expressed without the disintegrin/cysteine-rich domain that normally follows the N-terminal metalloproteinase. When a truncated form of ADAM17 composed of the signal peptide with the pro- and catalytic domains was expressed in baculovirus-infected insect cells, the major secreted product was a ternary complex of two prodomain fragments with the catalytic domain. The component polypeptides of the ternary complex were characterized by N-terminal analysis and mass spectrometry. Internal cleavage of the propeptide occurred following Arg-58, and a carboxypeptidase variably removed up to three basic residues from the newly created C-terminus. Cleavage at the C-terminus of the propeptide occurred after Arg-214. To prepare ADAM17 for crystal growth, a drug-like inhibitor was used to displace the propeptide and the complex of the catalytic domain with the inhibitor was isolated by size-exclusion chromatography and crystallized.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Catalytic Domain , Hydroxamic Acids/pharmacology , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Chromatography, Gel , Chromatography, High Pressure Liquid , Crystallization , Enzyme Inhibitors/pharmacology , Gene Expression , Humans , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...