Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Int J Neonatal Screen ; 7(3)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34449528

ABSTRACT

Krabbe disease is an autosomal recessive leukodystrophy caused by pathogenic variants in the galactocerebrosidase (GALC) gene. GALC activity is needed for the lysosomal hydrolysis of galactosylceramide, an important component of myelin. While most patients are infants, older patients are also diagnosed. Starting in 1970, a diagnosis could be made by measuring GALC activity in leukocytes and cultured cells. After the purification of GALC in 1993, the cDNA and genes were cloned. Over 260 disease-causing variants as well as activity lowering benign variants have been identified. While some pathogenic variants can be considered "severe," others can be considered "mild." The combination of alleles determines the type of Krabbe disease a person will have. To identify patients earlier, newborn screening (NBS) has been implemented in several states. Low GALC activity in this screening test may indicate a diagnosis of Krabbe disease. Second tier testing as well as neuro-diagnostic studies may be required to identify those individuals needing immediate treatment. Treatment of pre-symptomatic or mildly symptomatic patients at this time is limited to hematopoietic stem cell transplantation. Treatment studies using the mouse and dog models have shown that combining bone marrow transplantation with intra-venous gene therapy provides the best outcomes in terms of survival, behavior, and preservation of normal myelination in the central and peripheral nervous systems. With earlier diagnosis of patients through newborn screening and advances in treatment, it is hoped that more patients will have a much better quality of life.

2.
Bioimpacts ; 11(2): 135-146, 2021.
Article in English | MEDLINE | ID: mdl-33842284

ABSTRACT

Introduction: Krabbe disease (KD) is an autosomal recessive disorder caused by mutations in the galactocerebrosidase (GALC) gene resulting in neuro-inflammation and defective myelination in the central and peripheral nervous systems. Most infantile patients present with clinical features before six months of age and die before two years of age. The only treatment available for pre-symptomatic or mildly affected individuals is hematopoietic stem cell transplantation (HSCT). In the animal models, combining bone marrow transplantation (BMT) with gene therapy has shown the best results in disease outcome. In this study, we examine the outcome of gene therapy alone. Methods: Twitcher (twi) mice used in the study, have a W339X mutation in the GALC gene. Genotype identification of the mice was performed shortly after birth or post-natal day 1 (PND1), using polymerase chain reaction on the toe clips followed by restriction enzyme digestion and electrophoresis. Eight or nine-day-old affected mice were used for gene therapy treatment alone or combined with BMT. While iv injection of 4 × 1013 gc/kg of body weight of viral vector was used originally, different viral titers were also used without BMT to evaluate their outcomes. Results: When the standard viral dose was increased four- and ten-fold (4X and 10X) without BMT, the lifespans were increased significantly. Without BMT the affected mice were fertile, had the same weight and appearance as wild type mice and had normal strength and gait. The brains showed no staining for CD68, a marker for activated microglia/macrophages, and less astrogliosis than untreated twi mice. Conclusion: Our results demonstrate that, it may be possible to treat human KD patients with high dose AAVrh10 without blood stem cell transplantation which would eliminate the side effects of HSCT.

3.
Mol Genet Metab ; 134(1-2): 53-59, 2021.
Article in English | MEDLINE | ID: mdl-33832819

ABSTRACT

OBJECTIVE: To provide updated evidence and consensus-based recommendations for the classification of individuals who screen positive for Krabbe Disease (KD) and recommendations for long-term follow-up for those who are at risk for late onset Krabbe Disease (LOKD). METHODS: KD experts (KD NBS Council) met between July 2017 and June 2020 to develop consensus-based classification and follow-up recommendations. The resulting newly proposed recommendations were assessed in a historical cohort of 47 newborns from New York State who were originally classified at moderate or high risk for LOKD. RESULTS: Infants identified by newborn screening with possible KD should enter one of three clinical follow-up pathways (Early infantile KD, at-risk for LOKD, or unaffected), based on galactocerebrosidase (GALC) activity, psychosine concentration, and GALC genotype. Patients considered at-risk for LOKD based on low GALC activity and an intermediate psychosine concentration are further split into a high-risk or low-risk follow-up pathway based on genotype. Review of the historical New York State cohort found that the updated follow-up recommendations would reduce follow up testing by 88%. CONCLUSION: The KD NBS Council has presented updated consensus recommendations for efficient and effective classification and follow-up of NBS positive patients with a focus on long-term follow-up of those at-risk for LOKD.


Subject(s)
Consensus , Genotype , Leukodystrophy, Globoid Cell/classification , Leukodystrophy, Globoid Cell/genetics , Neonatal Screening/methods , Practice Guidelines as Topic , Dried Blood Spot Testing , Follow-Up Studies , Humans , Infant , Infant, Newborn , Late Onset Disorders/diagnosis , Late Onset Disorders/etiology , Late Onset Disorders/genetics , Leukodystrophy, Globoid Cell/diagnosis , Risk Factors
4.
Proc Natl Acad Sci U S A ; 117(49): 31177-31188, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33219123

ABSTRACT

A transplanted stem cell's engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell's "pathotropism." Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12-CXCR4 coupling. Alternatively, we chemically "mutated" CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a "designer" cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., "inflammo-attraction").


Subject(s)
Chemokine CXCL12/genetics , Neurons/metabolism , Protein Binding/genetics , Receptors, CXCR4/genetics , Astrocytes/metabolism , Astrocytes/pathology , Cell Movement/genetics , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Induced Pluripotent Stem Cells , Inflammation/genetics , Ligands , Mutagenesis/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurons/pathology
5.
JIMD Rep ; 54(1): 61-67, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685352

ABSTRACT

Lysosomal disorders are diseases that involve mutations in genes responsible for the coding of lysosomal enzymes, transport proteins, activator proteins and protein processing enzymes. These defects lead to the storage of specific metabolites within lysosomes resulting in a great variety of clinical features depending on the tissues with the storage, the storage products and the extent of the storage. The methods for rapidly diagnosing patients started in the late 1960's when the enzyme defects were identified eliminating the need for tissue biopsies. The first requests for diagnostic help in this laboratory came in 1973. In that year, patients with Krabbe disease and Niemann-Pick type A were diagnosed. Since that time samples from about 62 000 individuals have been received for diagnostic studies, and 4900 diagnoses have been made. The largest number of diagnosed individuals had metachromatic leukodystrophy and Krabbe disease because of our research interest in leukodystrophies. A number of new disorders were identified and the primary defects in other disorders were clarified. With new methods for diagnosis, including newborn screening, molecular analysis, microarrays, there is still a need for biochemical confirmation before treatment is considered. With new treatments, including gene therapy, stem cell transplantation, enzyme replacement used alone or in combination becoming more available, the need for rapid, accurate diagnosis is critical.

6.
Bioimpacts ; 10(2): 105-115, 2020.
Article in English | MEDLINE | ID: mdl-32363154

ABSTRACT

Introduction: Krabbe disease (KD) is an autosomal recessive lysosomal disorder caused by mutations in the galactocerebrosidase (GALC) gene. This results in defective myelination in the peripheral and central nervous systems due to low GALC activity. Treatment at this time is limited to hematopoietic stem cell transplantation (HSCT) in pre-symptomatic individuals. While this treatment extends the lives of treated individuals, most have difficulty walking by the end of the first decade due to peripheral neuropathy. Studies in the murine model of KD, twitcher (twi) combining bone marrow transplantation (BMT) with AAVrh10-mGALC showed a great extension of life from 40 days to about 400 days, with some living a full life time. Methods: In order to find the optimum conditions for dosing and timing of this combined treatment, twi mice were injected with five doses of AAVrh10-mGALC at different times after BMT. Survival, as well as GALC expression were monitored along with studies of sciatic nerve myelination and possible liver pathology. Results: Dosing had a pronounced effect on survival and measured GALC activity. There was window of time after BMT to inject the viral vector and see similar results, however delaying both the BMT and the viral injection shortened the lifespans of the treated mice. Lowering the viral dose too much decreased the correction of the sciatic nerve myelination. There was no evidence for hepatic neoplasia. Conclusion: These studies provide the conditions optimum for successfully treating the murine model of KD. There is some flexibility in dosing and timing to obtain a satisfactory outcome. These studies are critical to the planning of a human trial combining the "standard of care", HSCT, with a single iv injection of AAVrh10-GALC.

7.
Prenat Diagn ; 40(6): 738-745, 2020 05.
Article in English | MEDLINE | ID: mdl-32134517

ABSTRACT

OBJECTIVES: Nonimmune hydrops fetalis (NIHF) accounts for 90% of hydrops fetalis cases. About 15% to 29% of unexplained NIHF cases are caused by lysosomal storage diseases (LSD). We review the spectrum of LSD and associated clinical findings in NIHF in a cohort of patients referred to our institution. METHODS: We present a retrospective case-control study of cases with NIHF referred for LSD biochemical testing at a single center. Cases diagnosed with LSD were matched to controls with NIHF and negative LSD testing and analyzed according to the STROBE criteria to the extent the retrospective nature of this study allowed. RESULTS: Between January 2006 and December 2018, 28 patients with NIHF were diagnosed with a LSD. Eight types of LSD were diagnosed: galactosialidosis 8/28 (28.6%), sialic acid storage disease (SASD) 5/28 (17.9%), mucopolysaccharidosis VII 5/28 (17.9%), Gaucher 4/28 (14.3%), sialidosis 2/28 (7.1%), GM1 gangliosidosis 2/28 (7.1%), Niemann-Pick disease type C 1/28 (3.6%), and mucolipidosis II/III 1/28 (3.6%). Associated clinical features were hepatomegaly 16/21 (76.2%) vs 22/65 (33.8%), P < .05, splenomegaly 12/20 (60.0%) vs 14/58 (24.1%), P < .05, and hepatosplenomegaly 10/20 (50.0%) vs 13/58 (22.4%) P < .05. CONCLUSION: The most common LSD in NIHF were galactosialidosis, SASD, mucopolysaccharidosis VII, and Gaucher disease. LSD should be considered in unexplained NIHF cases, particularly if hepatomegaly, splenomegaly, or hepatosplenomegaly is visualized on prenatal ultrasound.


Subject(s)
Hydrops Fetalis/etiology , Lysosomal Storage Diseases/complications , Adult , Ascites/diagnostic imaging , Case-Control Studies , Edema/diagnostic imaging , Female , Gaucher Disease/complications , Gaucher Disease/diagnosis , Gestational Age , Hepatomegaly/diagnostic imaging , Humans , Hydrops Fetalis/diagnostic imaging , Infant, Newborn , Lysosomal Storage Diseases/diagnosis , Male , Mucolipidoses/complications , Mucolipidoses/diagnosis , Mucopolysaccharidosis VII/complications , Mucopolysaccharidosis VII/diagnosis , Niemann-Pick Disease, Type C/complications , Niemann-Pick Disease, Type C/diagnosis , Pericardial Effusion/diagnostic imaging , Pleural Effusion/diagnostic imaging , Polyhydramnios/diagnostic imaging , Pregnancy , Prenatal Diagnosis , Retrospective Studies , Sialic Acid Storage Disease/complications , Sialic Acid Storage Disease/diagnosis , Skin/diagnostic imaging , Splenomegaly/diagnostic imaging , Young Adult
8.
Mol Genet Metab ; 129(2): 161-164, 2020 02.
Article in English | MEDLINE | ID: mdl-31439510

ABSTRACT

Saposin A is a post-translation product of the prosaposin (PSAP) gene that serves as an activator protein of the galactocerebrosidase (GALC) enzyme, and is necessary for the degradation of certain glycosphingolipids. Deficiency of saposin A leads to a clinical picture identical to that of early-infantile Krabbe disease caused by GALC enzyme deficiency. Galactosylsphingosine, also known as psychosine, is a substrate of the GALC enzyme that is known to be elevated in classic Krabbe disease. We present the case of an 18-month-old male with clinical and radiological findings concerning for Krabbe disease who had preserved GALC enzyme activity and negative GALC gene sequencing, but was found to have a homozygous variant, c.257 T > A (p.I86N), in the saposin A peptide of PSAP. Psychosine determination on dried blood spot at 18 months of age was elevated to 12 nmol/L (normal <3 nmol/L). We present this case to add to the literature on the rare diagnosis of atypical Krabbe disease due to saposin A deficiency, to report a novel presumed pathogenic variant within PSAP, and to suggest that individuals with saposin A deficiency may have elevated levels of psychosine, similar to children with classic Krabbe disease due to GALC deficiency.


Subject(s)
Galactosylceramidase/genetics , Homozygote , Leukodystrophy, Globoid Cell/diagnostic imaging , Psychosine/blood , Saposins/deficiency , Dried Blood Spot Testing , Genetic Variation , Humans , Infant , Leukodystrophy, Globoid Cell/blood , Leukodystrophy, Globoid Cell/genetics , Magnetic Resonance Imaging , Male , Saposins/blood , Saposins/genetics
9.
Mol Genet Genomic Med ; 7(7): e00712, 2019 07.
Article in English | MEDLINE | ID: mdl-31115173

ABSTRACT

BACKGROUND: Deficiency in the enzyme ß-mannosidase was described over three decades ago. Although rare in occurrence, the presentation of childhood-onset ß-mannosidase deficiency consists of hypotonia in the newborn period followed by global development delay, behavior problems, and intellectual disability. No effective pharmacologic treatments have been available. METHODS: We report 2-year outcomes following the first umbilical cord blood transplant in a 4-year-old boy with early childhood-onset disease. RESULTS: We show restoration of leukocyte ß-mannosidase activity which remained normal at 2 years posttransplant, and a simultaneous increase in plasma ß-mannosidase activity and dramatic decrease in urine-free oligosaccharides were also observed. MRI of the brain remained stable. Neurocognitive evaluation revealed test point gains, although the magnitude of improvement was less than expected for age, causing lower IQ scores that represent a wider developmental gap between the patient and unaffected peers. CONCLUSION: Our findings suggest that hematopoietic cell transplant can correct the biochemical defect in ß-mannosidosis, although preservation of the neurocognitive trajectory may be a challenge.


Subject(s)
Cord Blood Stem Cell Transplantation , beta-Mannosidase/analysis , beta-Mannosidosis/therapy , Brain/diagnostic imaging , Child, Preschool , Chromatography, High Pressure Liquid , Dried Blood Spot Testing , Humans , Intellectual Disability/diagnosis , Leukocytes/enzymology , Magnetic Resonance Imaging , Male , Tandem Mass Spectrometry , beta-Mannosidase/blood , beta-Mannosidosis/pathology
10.
Mol Genet Metab Rep ; 19: 100460, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30828547

ABSTRACT

Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease mainly caused by a deficiency of arylsulfatase A activity. The typical clinical course of patients with the late infantile form includes a regression in motor skills with progression to dysphagia, seizures, hypotonia and death. We present a case of a 4-year-old female with rapidly progressive developmental regression with loss of motor milestones, spasticity and dysphagia. MRI showed volume loss and markedly abnormal deep white matter. Enzymatic testing in one laboratory showed arylsulfatase A activity in their normal range. However, extraction of urine showed a large increase in sulfatide excretion in a second laboratory. Measurement of arylsulfatase A in that laboratory showed a partial decrease in arylsulfatase A activity measured under typical conditions (about 37% of the normal mean). When the concentration of substrate in the assay was lowered to one quarter of that normally used, this individual had activity <10% of controls. The patient was found to be homozygous for an unusual missense mutation in the arylsulfatase A gene confirming the diagnosis of MLD. This case illustrates the importance of careful biochemical and molecular testing for MLD if there is suspicion of this diagnosis.

11.
Orphanet J Rare Dis ; 14(1): 46, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30777126

ABSTRACT

BACKGROUND: Krabbe disease is a rare neurological disorder caused by a deficiency in the lysosomal enzyme, ß-galactocerebrosidase, resulting in demyelination of the central and peripheral nervous systems. If left without treatment, Krabbe disease results in progressive neurodegeneration with reduced quality of life and early death. The purpose of this prospective study was to describe the natural progression of early onset Krabbe disease in a large cohort of patients. METHODS: Patients with early onset Krabbe disease were prospectively evaluated between 1999 and 2018. Data sources included diagnostic testing, parent questionnaires, standardized multidisciplinary neurodevelopmental assessments, and neuroradiological and neurophysiological tests. RESULTS: We evaluated 88 children with onset between 0 and 5 months. Median age of symptom onset was 4 months; median time to diagnosis after onset was 3 months. The most common initial symptoms were irritability, feeding difficulties, appendicular spasticity, and developmental delay. Other prevalent symptoms included axial hypotonia, abnormal deep tendon reflexes, constipation, abnormal pupillary response, scoliosis, loss of head control, and dysautonomia. Results of nerve conduction studies showed that 100% of patients developed peripheral neuropathy by 6 months of age. Median galactocerebrosidase enzyme activity was 0.05 nmol/h/mg protein. The median survival was 2 years. CONCLUSIONS: This is the largest prospective natural history study of Krabbe disease. It provides a comprehensive description of the disease during the first 2 years of life. With recent inclusion of state mandated newborn screening programs and promising therapeutic interventions, enhancing our understanding of disease progression in early onset Krabbe disease will be critical for developing treatments, designing clinical trials, and evaluating outcomes.


Subject(s)
Leukodystrophy, Globoid Cell/pathology , Neonatal Screening/methods , Child , Disease Progression , Female , Humans , Infant , Infant, Newborn , Male , Prospective Studies
12.
Orphanet J Rare Dis ; 13(1): 30, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391017

ABSTRACT

BACKGROUND: Krabbe disease is a rare neurodegenerative genetic disorder caused by deficiency of galactocerebrosidase. Patients with the infantile form of Krabbe disease can be treated at a presymptomatic stage with human stem cell transplantation which improves survival and clinical outcomes. However, without a family history, most cases of infantile Krabbe disease present after onset of symptoms and are ineligible for transplantation. In 2006, New York began screening newborns for Krabbe disease to identify presymptomatic cases. To ensure that those identified with infantile disease received timely treatment, New York public health and medical systems took steps to accurately diagnose and rapidly refer infants for human stem cell transplantation within the first few weeks of life. After 11 years of active screening in New York and the introduction of Krabbe disease newborn screening in other states, new information has been gained which can inform the design of newborn screening programs to improve infantile Krabbe disease outcomes. FINDINGS: Recent information relevant to Krabbe disease screening, diagnosis, and treatment were assessed by a diverse group of public health, medical, and advocacy professionals. Outcomes after newborn screening may improve if treatment for infantile disease is initiated before 30 days of life. Newer laboratory screening and diagnostic tools can improve the speed and specificity of diagnosis and help facilitate this early referral. Given the rarity of Krabbe disease, most recommendations were based on case series or expert opinion. CONCLUSION: This report updates recommendations for Krabbe disease newborn screening to improve the timeliness of diagnosis and treatment of infantile Krabbe disease. In the United States, several states have begun or are considering Krabbe disease newborn screening. These recommendations can guide public health laboratories on methodologies for screening and inform clinicians about the need to promptly diagnose and treat infantile Krabbe disease. The timing of the initial referral after newborn screening, the speed of diagnostic confirmation of infantile disease, and the transplantation center's experience and ability to rapidly respond to a suspected patient with newly diagnosed infantile Krabbe disease are critical for optimal outcomes.


Subject(s)
Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/therapy , Neonatal Screening/methods , Consensus , Hematopoietic Stem Cell Transplantation , Humans , Infant , Infant, Newborn , United States
13.
Hum Gene Ther ; 29(7): 785-801, 2018 07.
Article in English | MEDLINE | ID: mdl-29316812

ABSTRACT

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an inherited, neurologic disorder that results from deficiency of a lysosomal enzyme, galactosylceramidase. Most commonly, deficits of galactosylceramidase result in widespread central and peripheral nervous system demyelination and death in affected infants typically by 2 years of age. Hematopoietic stem-cell transplantation is the current standard of care in children diagnosed prior to symptom onset. However, disease correction is incomplete. Herein, the first adeno-associated virus (AAV) gene therapy experiments are presented in a naturally occurring canine model of GLD that closely recapitulates the clinical disease progression, neuropathological alterations, and biochemical abnormalities observed in human patients. Adapted from studies in twitcher mice, GLD dogs were treated by combination intravenous and intracerebroventricular injections of AAVrh10 to target both the peripheral and central nervous systems. Combination of intravenous and intracerebroventricular AAV gene therapy had a clear dose response and resulted in delayed onset of clinical signs, extended life-span, correction of biochemical defects, and attenuation of neuropathology. For the first time, therapeutic effect has been established in the canine model of GLD by targeting both peripheral and central nervous system impairments with potential clinical implications for GLD patients.


Subject(s)
Galactosylceramidase/administration & dosage , Genetic Therapy , Leukodystrophy, Globoid Cell/therapy , Peripheral Nervous System Diseases/therapy , Animals , Brain/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Dependovirus/genetics , Disease Models, Animal , Dogs , Galactosylceramidase/genetics , Genetic Vectors/administration & dosage , Humans , Infant , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology
14.
J Neurosci Res ; 94(11): 982-9, 2016 11.
Article in English | MEDLINE | ID: mdl-27638583

ABSTRACT

This Review summarizes the progress in understanding the pathogenesis and treatment of Krabbe disease from the description of five patients in by Knud Krabbe until 2016. To determine the cause of this genetic disease, pathological and chemical analyses of tissues from the nervous systems of patients were performed. It was determined that these patients had a pathological feature known as globoid cell in the brain and that this consisted partially of galactosylceramide, a major sphingolipid component of myelin. The finding that these patients had a deficiency of galactocerebrosidase (GALC) activity opened the way to relatively simple diagnostic testing with easily obtainable tissue samples, studies leading to the purification of GALC, and cloning of the GALC cDNA and gene. The availability of the gene sequence led to the identification of mutations in patients and to the current studies involving the use of viral vectors containing the GALC cDNA to treat experimentally naturally occurring animal models, such as twitcher mice. Currently, treatment of presymptomatic human patients is limited to hematopoietic stem cell transplantation (HSCT). With recent studies showing successful treatment of animal models with a combination of HSCT and viral gene therapy, it is hoped that more effective treatments will soon be available for human patients. For this Review, it is not possible to reference all of the articles contributing to our current state of knowledge about this disease; however, we have chosen those that have influenced our studies by suggesting research paths to pursue. © 2016 Wiley Periodicals, Inc.


Subject(s)
Disease Models, Animal , Leukodystrophy, Globoid Cell , Animals , Galactosylceramidase/deficiency , Galactosylceramidase/genetics , History, 20th Century , History, 21st Century , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/history , Leukodystrophy, Globoid Cell/therapy
15.
J Neurosci Res ; 94(11): 1076-83, 2016 11.
Article in English | MEDLINE | ID: mdl-27638593

ABSTRACT

Newborn screening (NBS) for Krabbe's disease (KD) has been instituted in several states, and New York State has had the longest experience. After an initial screening of dried blood spots, samples from individuals with galactocerebrosidase (GALC) values below a given cutoff level were subjected to additional testing, including sequencing of the GALC gene. This resulted in the identification of mutations that had previously been found in confirmed KD patients and of variants that had never previously been reported. Some individuals had variants considered to be polymorphisms, alone or on the same allele as another mutation. To help with counseling of families on the risk for a newborn to develop KD, expression studies were conducted with these variants identified by NBS. GALC activity was measured in COS1 cells for 140 constructs and compared with mutations that had previously been seen in confirmed cases of KD. When a polymorphism was present on the same allele as the variant, expressed activity was measured with and without the polymorphism. In some cases the presence of the polymorphism greatly lowered the measured GALC activity, possibly making it disease causing. Although it is not possible to predict conclusively whether a variant is severe and will result in infantile KD if two such variants are present or whether a variant is mild and will result in late-onset disease, some variants clearly are not disease causing. This is the largest expression study of GALC variants/mutations found in NBS and confirmed KD cases. This work will be helpful for counseling families of screen-positive newborns found to have low GALC activity. © 2016 Wiley Periodicals, Inc.


Subject(s)
Galactosylceramidase/genetics , Leukodystrophy, Globoid Cell/genetics , Mutation/genetics , Animals , COS Cells , Cercopithecus , Female , Galactosylceramidase/metabolism , Genetic Testing , Haplotypes , Humans , Infant, Newborn , Male , Mutagenesis, Site-Directed/methods , New York , Transfection
16.
Genet Med ; 18(12): 1235-1243, 2016 12.
Article in English | MEDLINE | ID: mdl-27171547

ABSTRACT

BACKGROUND: Early infantile Krabbe disease is rapidly fatal, but hematopoietic stem cell transplantation (HSCT) may improve outcomes if performed soon after birth. New York State began screening all newborns for Krabbe disease in 2006. METHODS: Infants with abnormal newborn screen results for Krabbe disease were referred to specialty-care centers. Newborns found to be at high risk for Krabbe disease underwent a neurodiagnostic battery to determine the need for emergent HSCT. RESULTS: Almost 2 million infants were screened. Five infants were diagnosed with early infantile Krabbe disease. Three died, two from HSCT-related complications and one from untreated disease. Two children who received HSCT have moderate to severe developmental delays. Forty-six currently asymptomatic children are considered to be at moderate or high risk for development of later-onset Krabbe disease. CONCLUSIONS: These results show significant HSCT-associated morbidity and mortality in early infantile Krabbe disease and raise questions about its efficacy when performed in newborns diagnosed through newborn screening. The unanticipated identification of "at risk" children introduces unique ethical and medicolegal issues. New York's experience raises questions about the risks, benefits, and practicality of screening newborns for Krabbe disease. It is imperative that objective assessments be made on an ongoing basis as additional states begin screening for this disorder.Genet Med 18 12, 1235-1243.


Subject(s)
Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Mass Screening , Neonatal Screening , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Infant, Newborn , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/mortality , New York , Risk Factors
17.
Pediatr Neurol ; 57: 98-100, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26825355

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency is an autosomal recessive lysosomal storage disorder characterized by the absence of several sulfatases and resulting from mutations in the gene encoding the human C (alpha)-formylglycine-generating enzyme. There have been a variety of biochemical and clinical presentations reported in this disorder. PATIENT DESCRIPTION: We present a 4-year-old girl with clinical findings of microcephaly, spondylolisthesis and neurological regression without ichthyosis, coarse facies, and organomegaly. RESULTS: The child's magnetic resonance imaging demonstrated confluent white matter abnormalities involving the periventricular and deep cerebral white matter with the U-fibers relatively spared. Biochemical testing showing low arylsulfatase A levels were initially thought to be consistent with a diagnosis of metachromatic leukodystrophy. The diagnosis of multiple sulfatase deficiency was pursued when genetic testing for metachromatic leukodystrophy was negative. CONCLUSION: This child illustrates the clinical heterogeneity of multiple sulfatase deficiency and that this disorder can occur without the classic clinical features.


Subject(s)
Multiple Sulfatase Deficiency Disease/diagnostic imaging , White Matter/diagnostic imaging , Cerebroside-Sulfatase/blood , Child, Preschool , Female , Glycine/analogs & derivatives , Glycine/genetics , Humans , Magnetic Resonance Imaging , Multiple Sulfatase Deficiency Disease/blood , Multiple Sulfatase Deficiency Disease/physiopathology , Mutation/genetics
18.
Genet Med ; 18(3): 239-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26795590

ABSTRACT

PURPOSE: Krabbe disease (KD) results from galactocerebrosidase (GALC) deficiency. Infantile KD symptoms include irritability, progressive stiffness, developmental delay, and death. The only potential treatment is hematopoietic stem cell transplantation. New York State (NYS) implemented newborn screening for KD in 2006. METHODS: Dried blood spots from newborns were assayed for GALC enzyme activity using mass spectrometry, followed by molecular analysis for those with low activity (≤12% of the daily mean). Infants with low enzyme activity and one or more mutations were referred for follow-up diagnostic testing and neurological examination. RESULTS: Of >1.9 million screened, 620 infants were subjected to molecular analysis and 348 were referred for diagnostic testing. Five had enzyme activities and mutations consistent with infantile KD and manifested clinical/neurodiagnostic abnormalities. Four underwent transplantation, two are surviving with moderate to severe handicaps, and two died from transplant-related complications. The significance of many sequence variants identified is unknown. Forty-six asymptomatic infants were found to be at moderate to high risk for disease. CONCLUSIONS: The positive predictive value of KD screening in NYS is 1.4% (5/346) considering confirmed infantile cases. The incidence of infantile KD in NYS is approximately 1 in 394,000, but it may be higher for later-onset forms.


Subject(s)
Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Leukodystrophy, Globoid Cell/diagnosis , Neonatal Screening/methods , Polymorphism, Single Nucleotide , Algorithms , Dried Blood Spot Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant, Newborn , Leukodystrophy, Globoid Cell/enzymology , Leukodystrophy, Globoid Cell/therapy , Mass Spectrometry , New York , Predictive Value of Tests , Treatment Outcome
19.
Mol Ther ; 23(11): 1681-1690, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26329589

ABSTRACT

Krabbe disease is an autosomal recessive disorder resulting from defects in the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency leads to severe neurological features. The only treatment for presymptomatic infantile patients and later-onset patients is hematopoietic stem cell transplantation (HSCT). This treatment is less than ideal with most patients eventually developing problems with gait and expressive language. Several naturally occurring animal models are available, including twitcher (twi) mice, which have been used for many treatment trials. Previous studies demonstrated that multiple injections of AAVrh10-GALC into the central nervous system (CNS) of neonatal twi mice resulted in significant improvements. Recently we showed that one i.v. injection of AAVrh10-GALC on PND10 resulted in normal GALC activity in the CNS and high activity in the peripheral nervous system (PNS). In the present study, a single i.v. injection of AAVrh10-GALC was given 1 day after bone marrow transplantation (BMT) on PND10. The mice show greatly extended lifespan and normal behavior with improved CNS and PNS findings. Since HSCT is the standard of care in human patients, adding this single i.v. injection of viral vector may greatly improve the treatment outcome.


Subject(s)
Bone Marrow Transplantation , Central Nervous System/pathology , Galactosylceramidase/genetics , Genetic Therapy/methods , Leukodystrophy, Globoid Cell/therapy , Peripheral Nervous System/pathology , Animals , Central Nervous System/metabolism , Dependovirus , Disease Models, Animal , Female , Galactosylceramidase/metabolism , Genetic Vectors , Hematopoietic Stem Cell Transplantation/methods , Injections, Intravenous , Leukodystrophy, Globoid Cell/genetics , Longevity , Male , Mice , Mice, Inbred C57BL , Peripheral Nervous System/metabolism , Point Mutation , Treatment Outcome
20.
Cytotherapy ; 17(9): 1314-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26276011

ABSTRACT

BACKGROUND AIMS: Cord blood (CB) transplantation slows neurodegeneration during certain inherited metabolic diseases. However, the number of donor cells in the brain of patients does not appear to be sufficient to provide benefit until several months after transplant. We developed the cell product DUOC-01 to provide therapeutic effects in the early post-transplant period. METHODS: DUOC-01 cultures initiated from banked CB units were characterized by use of time-lapse photomicroscopy during the 21-day manufacturing process. Antigen expression was measured by means of flow cytometry and immunocytochemistry; transcripts for cytokines and enzymes by quantitative real-time polymerase chain reaction; activities of lysosomal enzymes by direct biochemical analysis; alloreactivity of DUOC-01 and of peripheral blood (PB) mononuclear cells (MNC) to DUOC-01 by mixed lymphocyte culture methods; and cytokine secretion by Bioplex assays. RESULTS: DUOC-01 cultures contained highly active, attached, motile, slowly proliferating cells that expressed common (cluster of differentiation [CD]11b, CD14 and Iba1), M1 type (CD16, inducible nitric oxide synthase), and M2-type (CD163, CD206) macrophage or microglia markers. Activities of 11 disease-relevant lysosomal enzymes in DUOC-01 products were similar to those of normal PB cells. All DUOC-01 products secreted interleukin (IL)-6 and IL-10. Accumulation of transforming growth factor-ß, IL-1ß, interferon-γ and TNF-α in supernatants was variable. IL-12, IL-2, IL-4, IL-5 and IL-13 were not detected at significant concentrations. Galactocerebrosidase, transforming growth factor-ß and IL-10 transcripts were specifically enriched in DUOC-01 relative to CB cells. PB MNCs proliferated and released cytokines in response to DUOC-01. DUOC-01 did not proliferate in response to mismatched MNC. CONCLUSIONS: DUOC-01 has potential as an adjunctive cell therapy to myeloablative CB transplant for treatment of inherited metabolic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...