Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 27(5): 2368-2378, 2018 May.
Article in English | MEDLINE | ID: mdl-29990140

ABSTRACT

In this paper, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although convolutional neural networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve the CNN-based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark data sets demonstrate our method yields the state-of-the-art performance with competitive inference time.


Subject(s)
Attention/physiology , Deep Learning , Fixation, Ocular/physiology , Image Processing, Computer-Assisted/methods , Algorithms , Databases, Factual , Humans
2.
IEEE Trans Image Process ; 25(12): 5933-5942, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27740485

ABSTRACT

In this paper, we propose a real-time image superpixel segmentation method with 50 frames/s by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. In order to decrease the computational costs of superpixel algorithms, we adopt a fast two-step framework. In the first clustering stage, the DBSCAN algorithm with color-similarity and geometric restrictions is used to rapidly cluster the pixels, and then, small clusters are merged into superpixels by their neighborhood through a distance measurement defined by color and spatial features in the second merging stage. A robust and simple distance function is defined for obtaining better superpixels in these two steps. The experimental results demonstrate that our real-time superpixel algorithm (50 frames/s) by the DBSCAN clustering outperforms the state-of-the-art superpixel segmentation methods in terms of both accuracy and efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...