Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38013689

ABSTRACT

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

3.
Nat Commun ; 14(1): 2443, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147295

ABSTRACT

Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kß main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kß main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.

4.
J Synchrotron Radiat ; 29(Pt 6): 1420-1428, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36345750

ABSTRACT

As synchrotron facilities continue to generate increasingly brilliant X-rays and detector speeds increase, swift data reduction from the collected area detector images to more workable 1D diffractograms becomes of increasing importance. This work reports an integration algorithm that can integrate diffractograms in real time on modern laptops and can reach 10 kHz integration speeds on modern workstations using an efficient pixel-splitting and parallelization scheme. This algorithm is limited not by the computation of the integration itself but is rather bottlenecked by the speed of the data transfer to the processor, the data decompression and/or the saving of results. The algorithm and its implementation is described while the performance is investigated on 2D scanning X-ray diffraction/fluorescence data collected at the interface between an implant and forming bone.


Subject(s)
Algorithms , Synchrotrons , X-Ray Diffraction , X-Rays , Radiography
5.
J Synchrotron Radiat ; 29(Pt 3): 876-887, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35511021

ABSTRACT

The diffraction endstation of the NanoMAX beamline is designed to provide high-flux coherent X-ray nano-beams for experiments requiring many degrees of freedom for sample and detector. The endstation is equipped with high-efficiency Kirkpatrick-Baez mirror focusing optics and a two-circle goniometer supporting a positioning and scanning device, designed to carry a compact sample environment. A robot is used as a detector arm. The endstation, in continued development, has been in user operation since summer 2017.

6.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290124

ABSTRACT

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

7.
Struct Dyn ; 8(6): 064302, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34849380

ABSTRACT

In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kß x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kß XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kß1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.

8.
J Synchrotron Radiat ; 28(Pt 6): 1948-1953, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738950

ABSTRACT

The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012-1013 photons s-1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic reconstruction into multiple mutually incoherent modes and thus the Coherence in the name CoSAXS was verified. How the beamline can be used both for coherent imaging and XPCS measurements, which both heavily rely on the degree of coherence of the beam, was demonstrated. These results are the first experimental quantification of coherence properties in a SAXS instrument at a fourth-generation synchrotron light source.

9.
J Synchrotron Radiat ; 28(Pt 6): 1935-1947, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738949

ABSTRACT

NanoMAX is the first hard X-ray nanoprobe beamline at the MAX IV laboratory. It utilizes the unique properties of the world's first operational multi-bend achromat storage ring to provide an intense and coherent focused beam for experiments with several methods. In this paper we present the beamline optics design in detail, show the performance figures, and give an overview of the surrounding infrastructure and the operational diffraction endstation.

10.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397240

ABSTRACT

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

11.
J Synchrotron Radiat ; 28(Pt 4): 1253-1260, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34212891

ABSTRACT

The emergence of fourth-generation synchrotrons is prompting the development of new systems for experimental control and data acquisition. However, as general control systems are designed to cover a wide set of instruments and techniques, they tend to become large and complicated, at the cost of experimental flexibility. Here we present Contrast, a simple Python framework for interacting with beamline components, orchestrating experiments and managing data acquisition. The system is presented and demonstrated via its application at the NanoMAX beamline of the MAX IV Laboratory.

12.
Nat Commun ; 12(1): 1086, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597529

ABSTRACT

The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kß) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.


Subject(s)
Cytochromes c/metabolism , Ferrous Compounds/metabolism , Iron/metabolism , Metals/metabolism , Methionine/metabolism , Cytochromes c/chemistry , Electron Transport/radiation effects , Ferrous Compounds/chemistry , Heme/chemistry , Heme/metabolism , Iron/chemistry , Metals/chemistry , Methionine/chemistry , Molecular Dynamics Simulation , Photolysis , Spectrometry, X-Ray Emission
13.
Sci Rep ; 11(1): 505, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436816

ABSTRACT

Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N[Formula: see text] molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.

14.
Phys Rev Lett ; 125(3): 037404, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745427

ABSTRACT

Kß x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al., Phys. Rev. Lett. 120, 133203 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.133203]. To apply this new approach to the chemically more sensitive but much weaker Kß x-ray emission lines requires a mechanism to outcompete the dominant amplification of the Kα emission. Here we report the observation of seeded amplified Kß x-ray emission from a NaMnO_{4} solution using two colors of x-ray free-electron laser pulses, one to create the 1s core-hole population inversion and the other to seed the amplified Kß emission. Comparing the observed seeded amplified Kß emission signal with that from conventional Kß emission into the same solid angle, we obtain a signal enhancement of more than 10^{5}. Our findings are the first important step of enhancing and controlling the emission of selected final states of the Kß spectrum with applications in chemical and materials science.

15.
J Chem Phys ; 152(7): 074203, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32087640

ABSTRACT

Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.

16.
J Synchrotron Radiat ; 26(Pt 5): 1716-1724, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490163

ABSTRACT

This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.

17.
Nano Lett ; 19(8): 4981-4989, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31260315

ABSTRACT

The light-induced selective population of short-lived far-from-equilibrium vibration modes is a promising approach for controlling ultrafast and irreversible structural changes in functional nanomaterials. However, this requires a detailed understanding of the dynamics and evolution of these phonon modes and their coupling to the excited-state electronic structure. Here, we combine femtosecond mega-electronvolt electron diffraction experiments on a prototypical layered material, MoTe2, with non-adiabatic quantum molecular dynamics simulations and ab initio electronic structure calculations to show how non-radiative energy relaxation pathways for excited electrons can be tuned by controlling the optical excitation energy. We show how the dominant intravalley and intervalley scattering mechanisms for hot and band-edge electrons leads to markedly different transient phonon populations evident in electron diffraction patterns. This understanding of how tuning optical excitations affect phonon populations and atomic motion is critical for efficiently controlling light-induced structural transitions of optoelectronic devices.

18.
J Synchrotron Radiat ; 26(Pt 3): 629-634, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074425

ABSTRACT

An X-ray emission spectrometer that can detect the sulfur Kα emission lines with large throughput and a high energy resolution is presented. The instrument is based on a large d-spacing perfect Bragg analyzer that diffracts the sulfur Kα emission at close to backscattering angles. This facilitates the application of efficient concepts routinely employed in hard X-ray spectrometers towards the tender X-ray regime. The instrument described in this work is based on an energy-dispersive von Hamos geometry that is well suited for photon-in photon-out spectroscopy at X-ray free-electron laser and synchrotron sources. Comparison of its performance with previously used instrumentation is presented through measurements using sulfur-containing species performed at the LCLS. It is shown that the overall signal intensity is increased by a factor of ∼15. Implementation of this approach in the design of a tender X-ray spectroscopy endstation for LCLS-II is also discussed.

19.
Nature ; 563(7731): 421-425, 2018 11.
Article in English | MEDLINE | ID: mdl-30405241

ABSTRACT

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Subject(s)
Oxygen/metabolism , Photosynthesis , Water/chemistry , Water/metabolism , Calcium/metabolism , Crystallography, X-Ray , Cyanobacteria/chemistry , Lasers , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism
20.
Biochemistry ; 57(31): 4629-4637, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29906115

ABSTRACT

Serial femtosecond crystallography (SFX) using the ultrashort X-ray pulses from a X-ray free-electron laser (XFEL) provides a new way of collecting structural data at room temperature that allows for following the reaction in real time after initiation. XFEL experiments are conducted in a shot-by-shot mode as the sample is destroyed and replenished after each X-ray pulse, and therefore, monitoring and controlling the data quality by using in situ diagnostic tools is critical. To study metalloenzymes, we developed the use of simultaneous collection of X-ray diffraction of crystals along with X-ray emission spectroscopy (XES) data that is used as a diagnostic tool for crystallography, by monitoring the chemical state of the metal catalytic center. We have optimized data analysis methods and sample delivery techniques for fast and active feedback to ensure the quality of each batch of samples and the turnover of the catalytic reaction caused by reaction triggering methods. Here, we describe this active in situ feedback system using Photosystem II as an example that catalyzes the oxidation of H2O to O2 at the Mn4CaO5 active site. We used the first moments of the Mn Kß1,3 emission spectra, which are sensitive to the oxidation state of Mn, as the primary diagnostics. This approach is applicable to different metalloproteins to determine the integrity of samples and follow changes in the chemical states of the reaction that can be initiated by light or activated by substrates and offers a metric for determining the diffraction images that are used for the final data sets.


Subject(s)
Crystallography, X-Ray/methods , Metalloproteins/chemistry , Spectrometry, X-Ray Emission/methods , Catalysis , Lasers , Manganese/metabolism , Metalloproteins/metabolism , Oxygen/metabolism , Temperature , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...