Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1356436, 2024.
Article in English | MEDLINE | ID: mdl-38433832

ABSTRACT

Recent advances in the field of artificial intelligence (AI) could yield new insights into the potential causes of multiple sclerosis (MS) and factors influencing its course as the use of AI opens new possibilities regarding the interpretation and use of big data from not only a cross-sectional, but also a longitudinal perspective. For each patient with MS, there is a vast amount of multimodal data being accumulated over time. But for the application of AI and related technologies, these data need to be available in a machine-readable format and need to be collected in a standardized and structured manner. Through the use of mobile electronic devices and the internet it has also become possible to provide healthcare services from remote and collect information on a patient's state of health outside of regular check-ups on site. Against this background, we argue that the concept of pathways in healthcare now could be applied to structure the collection of information across multiple devices and stakeholders in the virtual sphere, enabling us to exploit the full potential of AI technology by e.g., building digital twins. By going digital and using pathways, we can virtually link patients and their caregivers. Stakeholders then could rely on digital pathways for evidence-based guidance in the sequence of procedures and selection of therapy options based on advanced analytics supported by AI as well as for communication and education purposes. As far as we aware of, however, pathway modelling with respect to MS management and treatment has not been thoroughly investigated yet and still needs to be discussed. In this paper, we thus present our ideas for a modular-integrative framework for the development of digital patient pathways for MS treatment.


Subject(s)
Artificial Intelligence , Multiple Sclerosis , Humans , Cross-Sectional Studies , Multiple Sclerosis/diagnosis , Multiple Sclerosis/therapy , Awareness , Communication
2.
Autoimmun Rev ; 22(8): 103358, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178996

ABSTRACT

Multiple sclerosis (MS) has a longitudinal and heterogeneous course, with an increasing number of therapy options and associated risk profiles, leading to a constant increase in the number of parameters to be monitored. Even though important clinical and subclinical data are being generated, treating neurologists may not always be able to use them adequately for MS management. In contrast to the monitoring of other diseases in different medical fields, no target-based approach for a standardized monitoring in MS has been established yet. Therefore, there is an urgent need for a standardized and structured monitoring as part of MS management that is adaptive, individualized, agile, and multimodal-integrative. We discuss the development of an MS monitoring matrix which can help facilitate data collection over time from different dimensions and perspectives to optimize the treatment of people with MS (pwMS). In doing so, we show how different measurement tools can combined to enhance MS treatment. We propose to apply the concept of patient pathways to disease and intervention monitoring, not losing track of their interrelation. We also discuss the use of artificial intelligence (AI) to improve the quality of processes, outcomes, and patient safety, as well as personalized and patient-centered care. Patient pathways allow us to track the patient's journey over time and can always change (e.g., when there is a switch in therapy). They therefore may assist us in the continuous improvement of monitoring in an iterative process. Improving the monitoring process means improving the care of pwMS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/epidemiology , Multiple Sclerosis/therapy , Disease Progression , Comorbidity , Medication Adherence , Artificial Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL
...