Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Nat Commun ; 15(1): 4316, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773095

ABSTRACT

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Subject(s)
Actins , Eye Proteins , Retinitis Pigmentosa , Animals , Actins/metabolism , Mice , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Cilia/metabolism , Humans , Retinal Photoreceptor Cell Outer Segment/metabolism , Mice, Knockout , Mice, Inbred C57BL , Cell Membrane/metabolism
2.
Life Sci Alliance ; 7(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38182160

ABSTRACT

Primary cilia mediate sensory signaling in multiple organisms and cell types but have structures adapted for specific roles. Structural defects in them lead to devastating diseases known as ciliopathies in humans. Key to their functions are structures at their base: the basal body, the transition zone, the "Y-shaped links," and the "ciliary necklace." We have used cryo-electron tomography with subtomogram averaging and conventional transmission electron microscopy to elucidate the structures associated with the basal region of the "connecting cilia" of rod outer segments in mouse retina. The longitudinal variations in microtubule (MT) structures and the lumenal scaffold complexes connecting them have been determined, as well as membrane-associated transition zone structures: Y-shaped links connecting MT to the membrane, and ciliary beads connected to them that protrude from the cell surface and form a necklace-like structure. These results represent a clearer structural scaffold onto which molecules identified by genetics, proteomics, and superresolution fluorescence can be placed in our emerging model of photoreceptor sensory cilia.


Subject(s)
Centrioles , Cilia , Humans , Animals , Mice , Electron Microscope Tomography , Microscopy, Electron, Transmission , Basal Bodies
4.
Adv Exp Med Biol ; 1415: 395-402, 2023.
Article in English | MEDLINE | ID: mdl-37440063

ABSTRACT

The small size of ciliary structures that underlies photoreceptor function and inherited ciliopathies requires imaging techniques adapted to visualizing them at the highest possible resolution. In addition to powerful super-resolution imaging modalities, emerging approaches to sample preparation, including expansion microscopy (ExM), can provide a robust route to imaging specific molecules at the nanoscale level in the retina. We describe a protocol for applying ExM to whole retinas in order to achieve nanoscale fluorescence imaging of ciliary markers, including tubulin, CEP290, centrin, and CEP164. The results are consistent with those from other super-resolution fluorescence techniques and reveal new insights into their arrangements with respect to the subcompartments of photoreceptor cilia. This technique is complimentary to other imaging modalities used in retinal imaging, and can be carried out in virtually any laboratory, without the need for expensive specialized equipment.


Subject(s)
Cilia , Microscopy , Mice , Animals , Retina/diagnostic imaging , Photoreceptor Cells
5.
J Biol Chem ; 299(7): 104896, 2023 07.
Article in English | MEDLINE | ID: mdl-37290531

ABSTRACT

Measuring the relative effect that any two sequence positions have on each other may improve protein design or help better interpret coding variants. Current approaches use statistics and machine learning but rarely consider phylogenetic divergences which, as shown by Evolutionary Trace studies, provide insight into the functional impact of sequence perturbations. Here, we reframe covariation analyses in the Evolutionary Trace framework to measure the relative tolerance to perturbation of each residue pair during evolution. This approach (CovET) systematically accounts for phylogenetic divergences: at each divergence event, we penalize covariation patterns that belie evolutionary coupling. We find that while CovET approximates the performance of existing methods to predict individual structural contacts, it performs significantly better at finding structural clusters of coupled residues and ligand binding sites. For example, CovET found more functionally critical residues when we examined the RNA recognition motif and WW domains. It correlates better with large-scale epistasis screen data. In the dopamine D2 receptor, top CovET residue pairs recovered accurately the allosteric activation pathway characterized for Class A G protein-coupled receptors. These data suggest that CovET ranks highest the sequence position pairs that play critical functional roles through epistatic and allosteric interactions in evolutionarily relevant structure-function motifs. CovET complements current methods and may shed light on fundamental molecular mechanisms of protein structure and function.


Subject(s)
Evolution, Molecular , Sequence Alignment , Binding Sites/genetics , Phylogeny , Receptors, G-Protein-Coupled/genetics , Sequence Alignment/methods
6.
J Biol Chem ; 299(4): 103030, 2023 04.
Article in English | MEDLINE | ID: mdl-36806686

ABSTRACT

Upon ligand binding to a G protein-coupled receptor, extracellular signals are transmitted into a cell through sets of residue interactions that translate ligand binding into structural rearrangements. These interactions needed for functions impose evolutionary constraints so that, on occasion, mutations in one position may be compensated by other mutations at functionally coupled positions. To quantify the impact of amino acid substitutions in the context of major evolutionary divergence in the G protein-coupled receptor subfamily of metabotropic glutamate receptors (mGluRs), we combined two phylogenetic-based algorithms, Evolutionary Trace and covariation Evolutionary Trace, to infer potential structure-function couplings and roles in mGluRs. We found a subset of evolutionarily important residues at known functional sites and evidence of coupling among distinct structural clusters in mGluR. In addition, experimental mutagenesis and functional assays confirmed that some highly covariant residues are coupled, revealing their synergy. Collectively, these findings inform a critical step toward understanding the molecular and structural basis of amino acid variation patterns within mGluRs and provide insight for drug development, protein engineering, and analysis of naturally occurring variants.


Subject(s)
Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Binding Sites , Phylogeny , Ligands , Receptors, G-Protein-Coupled/genetics
7.
JCI Insight ; 7(23)2022 12 08.
Article in English | MEDLINE | ID: mdl-36477361

ABSTRACT

NK cell deficiencies (NKD) are a type of primary immune deficiency in which the major immunologic abnormality affects NK cell number, maturity, or function. Since NK cells contribute to immune defense against virally infected cells, patients with NKD experience higher susceptibility to chronic, recurrent, and fatal viral infections. An individual with recurrent viral infections and mild hypogammaglobulinemia was identified to have an X-linked damaging variant in the transcription factor gene ELF4. The variant does not decrease expression but disrupts ELF4 protein interactions and DNA binding, reducing transcriptional activation of target genes and selectively impairing ELF4 function. Corroborating previous murine models of ELF4 deficiency (Elf4-/-) and using a knockdown human NK cell line, we determined that ELF4 is necessary for normal NK cell development, terminal maturation, and function. Through characterization of the NK cells of the proband, expression of the proband's variant in Elf4-/- mouse hematopoietic precursor cells, and a human in vitro NK cell maturation model, we established this ELF4 variant as a potentially novel cause of NKD.


Subject(s)
Transcription Factors , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Killer Cells, Natural , Transcription Factors/genetics
8.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35275162

ABSTRACT

The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Disease Models, Animal , Humans , Mice , Mutation/genetics , RNA, Messenger/genetics , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34916293

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or ß-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Calcium , Cell Line, Tumor , Computer Simulation , Enzyme-Linked Immunosorbent Assay , Humans , Mutation , Neoplasms/genetics , Protein Conformation , Receptors, G-Protein-Coupled/genetics , beta-Arrestins/genetics
10.
J Biol Chem ; 297(6): 101418, 2021 12.
Article in English | MEDLINE | ID: mdl-34793838

ABSTRACT

Signals from retinal photoreceptors are processed in two parallel channels-the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.


Subject(s)
Receptors, Metabotropic Glutamate/metabolism , Retinal Bipolar Cells/metabolism , Synapses/metabolism , Synaptic Transmission , TRPM Cation Channels/metabolism , Animals , Cell Line , Mice , Mutation , Photoreceptor Cells, Vertebrate/metabolism , Protein Domains , Protein Transport , Receptors, Metabotropic Glutamate/genetics , Synapses/genetics , TRPM Cation Channels/genetics
11.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34520396

ABSTRACT

Mutations in the cilium-associated protein CEP290 cause retinal degeneration as part of multiorgan ciliopathies or as retina-specific diseases. The precise location and the functional roles of CEP290 within cilia and, specifically, the connecting cilia (CC) of photoreceptors, remain unclear. We used super-resolution fluorescence microscopy and electron microscopy to localize CEP290 in the CC and in the primary cilia of cultured cells with subdiffraction resolution and to determine effects of CEP290 deficiency in 3 mutant models. Radially, CEP290 localizes in close proximity to the microtubule doublets in the region between the doublets and the ciliary membrane. Longitudinally, it is distributed throughout the length of the CC whereas it is confined to the very base of primary cilia in human retinal pigment epithelium-1 cells. We found Y-shaped links, ciliary substructures between microtubules and membrane, throughout the length of the CC. Severe CEP290 deficiencies in mouse models did not prevent assembly of cilia or cause obvious mislocalization of ciliary components in early stages of degeneration. There were fewer cilia and no normal outer segments in the mutants, but the Y-shaped links were clearly present. These results point to photoreceptor-specific functions of CEP290 essential for CC maturation and stability following the earliest stages of ciliogenesis.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Cycle Proteins/metabolism , Cilia/metabolism , Ciliopathies/genetics , Cytoskeletal Proteins/metabolism , Microscopy/methods , Animals , Disease Models, Animal , Humans , Mice
12.
Pflugers Arch ; 473(9): 1517-1537, 2021 09.
Article in English | MEDLINE | ID: mdl-34050409

ABSTRACT

The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.


Subject(s)
Cilia/ultrastructure , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Photoreceptor Cell Inner Segment/ultrastructure , Retinal Photoreceptor Cell Outer Segment/ultrastructure , Animals , Cilia/physiology , Humans , Retinal Cone Photoreceptor Cells/physiology , Retinal Photoreceptor Cell Inner Segment/physiology , Retinal Photoreceptor Cell Outer Segment/physiology
13.
J Comp Neurol ; 529(1): 221-233, 2021 01.
Article in English | MEDLINE | ID: mdl-32390181

ABSTRACT

Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.


Subject(s)
Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Retinal Bipolar Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Synapses/metabolism , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Membrane Proteins/analysis , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/analysis , Retinal Bipolar Cells/chemistry , Retinal Rod Photoreceptor Cells/chemistry , Synapses/chemistry
14.
Biology (Basel) ; 9(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171845

ABSTRACT

The major pathway for the production of the low-abundance membrane lipid phosphatidylinositol 3-phosphate (PI(3)P) synthesis is catalyzed by class III phosphoinositide 3-kinase (PI3K) Vps34. The absence of Vps34 was previously found to disrupt autophagy and other membrane-trafficking pathways in some sensory neurons, but the roles of phosphatidylinositol 3-phosphate and Vps34 in cone photoreceptor cells have not previously been explored. We found that the deletion of Vps34 in neighboring rods in mouse retina did not disrupt cone function up to 8 weeks after birth, despite diminished rod function. Immunoblotting and lipid analysis of cones isolated from the cone-dominant retinas of the neural retina leucine zipper gene knockout mice revealed that both PI(3)P and Vps34 protein are present in mouse cones. To determine whether Vps34 and PI(3)P are important for cone function, we conditionally deleted Vps34 in cone photoreceptor cells of the mouse retina. Overall retinal morphology and rod function appeared to be unaffected. However, the loss of Vps34 in cones resulted in the loss of structure and function. There was a substantial reduction throughout the retina in the number of cones staining for M-opsin, S-opsin, cone arrestin, and peanut agglutinin, revealing degeneration of cones. These studies indicate that class III PI3K, and presumably PI(3)P, play essential roles in cone photoreceptor cell function and survival.

15.
FASEB J ; 34(9): 12502-12520, 2020 09.
Article in English | MEDLINE | ID: mdl-32721041

ABSTRACT

The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.


Subject(s)
Macular Degeneration , Mechanistic Target of Rapamycin Complex 1/physiology , Retinal Pigment Epithelium , Aging , Animals , Disease Models, Animal , Fatty Acids/metabolism , Glucose/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Transcriptome
16.
Cells ; 9(4)2020 04 02.
Article in English | MEDLINE | ID: mdl-32252387

ABSTRACT

Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.


Subject(s)
Phosphatidylinositols/adverse effects , Protein Transport/physiology , Retina/pathology , Retinal Diseases/physiopathology , Humans , Phosphorylation , Signal Transduction
17.
Proc Natl Acad Sci U S A ; 116(47): 23562-23572, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31690665

ABSTRACT

Primary cilia carry out numerous signaling and sensory functions, and defects in them, "ciliopathies," cause a range of symptoms, including blindness. Understanding of their nanometer-scale ciliary substructures and their disruptions in ciliopathies has been hindered by limitations of conventional microscopic techniques. We have combined cryoelectron tomography, enhanced by subtomogram averaging, with superresolution stochastic optical reconstruction microscopy (STORM) to define subdomains within the light-sensing rod sensory cilium of mouse retinas and reveal previously unknown substructures formed by resident proteins. Domains are demarcated by structural features such as the axoneme and its connections to the ciliary membrane, and are correlated with molecular markers of subcompartments, including the lumen and walls of the axoneme, the membrane glycocalyx, and the intervening cytoplasm. Within this framework, we report spatial distributions of key proteins in wild-type (WT) mice and the effects on them of genetic deficiencies in 3 models of Bardet-Biedl syndrome.


Subject(s)
Bardet-Biedl Syndrome/pathology , Cilia/ultrastructure , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Microscopy, Fluorescence/methods , Nanotechnology/methods , Photoreceptor Connecting Cilium/ultrastructure , Rod Cell Outer Segment/ultrastructure , Single Molecule Imaging/methods , Animals , Axoneme/chemistry , Axoneme/ultrastructure , Centrioles/ultrastructure , Disease Models, Animal , Eye Proteins/analysis , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/analysis , Microtubules/ultrastructure , Multiprotein Complexes , Muscle Proteins/analysis , Photoreceptor Connecting Cilium/chemistry , Qa-SNARE Proteins/analysis , Tumor Suppressor Proteins/analysis
18.
J Biol Chem ; 294(50): 19279-19291, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31676688

ABSTRACT

The D2 dopamine receptor and the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A) are closely-related G-protein-coupled receptors (GPCRs) from the class A bioamine subfamily. Despite structural similarity, they respond to distinct ligands through distinct downstream pathways, whose dysregulation is linked to depression, bipolar disorder, addiction, and psychosis. They are important drug targets, and it is important to understand how their bias toward G-protein versus ß-arrestin signaling pathways is regulated. Previously, evolution-based computational approaches, difference Evolutionary Trace and Evolutionary Trace-Mutual information (ET-Mip), revealed residues and residue pairs that, when switched in the D2 receptor to the corresponding residues from 5-HT2A, altered ligand potency and G-protein activation efficiency. We have tested these residue swaps for their ability to trigger recruitment of ß-arrestin2 in response to dopamine or serotonin. The results reveal that the selected residues modulate agonist potency, maximal efficacy, and constitutive activity of ß-arrestin2 recruitment. Whereas dopamine potency for most variants was similar to that for WT and lower than for G-protein activation, potency in ß-arrestin2 recruitment for N124H3.42 was more than 5-fold higher. T205M5.54 displayed high constitutive activity, enhanced dopamine potency, and enhanced efficacy in ß-arrestin2 recruitment relative to WT, and L379F6.41 was virtually inactive. These striking differences from WT activity were largely reversed by a compensating mutation (T205M5.54/L379F6.41) at residues previously identified by ET-Mip as functionally coupled. The observation that the signs and relative magnitudes of the effects of mutations in several cases are at odds with their effects on G-protein activation suggests that they also modulate signaling bias.


Subject(s)
Receptors, Dopamine D2/genetics , Signal Transduction/genetics , Cells, Cultured , Dopamine/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Serotonin/pharmacology , Signal Transduction/drug effects
19.
J Am Chem Soc ; 141(37): 14699-14706, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31450884

ABSTRACT

Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations. Significantly, upon exposure to air and visible light residing in their absorption regime (365-630 nm), thio-caged fluorophores can be efficiently desulfurized to their oxo derivatives, thus restoring strong emission of the fluorophores. The effective photoactivation makes thio-caged fluorophores promising candidates for super-resolution imaging, which was realized by photoactivated localization microscopy (PALM) with low-power activation light under physiological conditions in the absence of cytotoxic additives (e.g., thiols, oxygen scavengers), a feature superior to traditional PALM probes. The versatility of this thio-caging strategy was further demonstrated by multicolor super-resolution imaging of lipid droplets and proteins of interest.


Subject(s)
Fluorescent Dyes/chemistry , Light , Microscopy, Fluorescence/methods , Adipocytes/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Fluorescence , Sulfhydryl Compounds/chemistry
20.
Invest Ophthalmol Vis Sci ; 60(8): 2861-2874, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31260037

ABSTRACT

Purpose: Phosphatidylinositol-3-phosphate (PI(3)P), and Vps34, the type III phosphatidylinositol 3-kinase primarily responsible for its production, are important for function and survival of sensory neurons, where they have key roles in membrane processing events, such as autophagy, endosome processing, and fusion of membranes bearing ubiquitinated cargos with lysosomes. We examined their roles in the most abundant class of secondary neurons in the vertebrate retina, the ON-bipolar cells (ON-BCs). Methods: A conditional Vps34 knockout mouse line was generated by crossing Vps34 floxed mice with transgenic mice expressing Cre recombinase in ON-BCs. Structural changes in the retina were determined by immunofluorescence and electron microscopy, and bipolar cell function was determined by electroretinography. Results: Vps34 deletion led to selective death of ON-BCs, a thinning of the inner nuclear layer, and a progressive decline of electroretinogram b-wave amplitudes. There was no evidence for loss of other retinal neurons, or disruption of rod-horizontal cell contacts in the outer plexiform layer. Loss of Vps34 led to aberrant accumulation of membranes positive for autophagy markers LC3, p62, and ubiquitin, accumulation of endosomal membranes positive for Rab7, and accumulation of lysosomes. Similar effects were observed in Purkinje cells of the cerebellum, leading to severe and progressive ataxia. Conclusions: These results support an essential role for PI(3)P in fusion of autophagosomes with lysosomes and in late endosome maturation. The cell death resulting from Vps34 knockout suggests that these processes are essential for the health of ON-BCs.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/physiology , Retinal Bipolar Cells/metabolism , Animals , Autophagosomes , Electroporation , Electroretinography , Lysosomes , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Plasmids/genetics , Polymerase Chain Reaction , Proto-Oncogene Proteins c-myc/metabolism , Retinal Bipolar Cells/cytology , Ubiquitin/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...