Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 18(2): 428-441, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34331737

ABSTRACT

The desire to document and understand the cumulative implications of oil sands (OS) development in the ambient environment of northeastern Alberta has motivated increased investment and release of information in the past decade. Here, we summarize the knowledge presented in the theme-based review papers in this special series, including air, surface water, terrestrial biology, and Indigenous community-based monitoring in order to (1) consolidate knowledge gained to date, (2) highlight key commonalities and gaps, and (3) leverage this knowledge to assess the state of integration in environmental monitoring efforts in the OS region and suggest next steps. Among air, water, and land studies, the individual reviews identified a clear focus on describing stressors, including primarily (1) contaminant emission, transport, transformation, deposition, and exposure, and (2) landscape disturbance. These emphases are generally partitioned by theme; air and water studies focus heavily on chemical stressors, whereas terrestrial monitoring focuses on biological change and landscape disturbance. Causal attribution is often stated as a high priority objective across all themes. However, studies often rely on spatial proximity to attribute cause to industrial activity, leaving causal attribution potentially confounded by spatial covariance of both OS- and non-OS-related stressors in the region, and by the complexity of interacting pathways between sources of environmental change and ecological receptors. Geospatial and modeling approaches are common across themes and may represent clear integration opportunities, particularly to help inform investigation-of-cause, but are not a replacement for robust field monitoring designs. Cumulative effects assessment remains a common focus of regional monitoring, but is limited in the peer-reviewed literature, potentially reflecting a lack of integration among monitoring efforts beyond narrow integrated interpretations of results. Addressing this requires greater emphasis on a priori integrated data collection and integrated analyses focused on the main residual exposure pathways, such as atmospheric deposition. Integr Environ Assess Manag 2022;18:428-441. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Monitoring , Oil and Gas Fields , Alberta , Ecotoxicology , Environmental Monitoring/methods
2.
Integr Environ Assess Manag ; 18(2): 333-360, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34676977

ABSTRACT

This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Alberta , Environmental Monitoring/methods , Oil and Gas Fields , Organic Chemicals
3.
Environ Sci Technol ; 52(19): 10946-10955, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30229653

ABSTRACT

Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Canada , Ecosystem , Environmental Monitoring , Lakes , Oil and Gas Fields , Rapeseed Oil
4.
Atmos Environ (1994) ; 178: 19-30, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29681759

ABSTRACT

During May 2016 a very large boreal wildfire burned throughout the Athabasca Oil Sands Region (AOSR) in central Canada, and in close proximity to an extensive air quality monitoring network. This study examines speciated 24-h integrated polycyclic aromatic hydrocarbon (PAH) and volatile organic compound (VOC) measurements collected every sixth day at four and seven sites, respectively, from May to August 2016. The sum of PAHs (ΣPAH) was on average 17 times higher in fire-influenced samples (852 ng m-3, n = 8), relative to non-fire influenced samples (50 ng m-3, n = 64). Diagnostic PAH ratios in fire-influenced samples were indicative of a biomass burning source, whereas ratios in June to August samples showed additional influence from petrogenic and fossil fuel combustion. The average increase in the sum of VOCs (ΣVOC) was minor by comparison: 63 ppbv for fire-influenced samples (n = 16) versus 46 ppbv for non-fire samples (n = 90). The samples collected on August 16th and 22nd had large ΣVOC concentrations at all sites (average of 123 ppbv) that were unrelated to wildfire emissions, and composed primarily of acetaldehyde and methanol suggesting a photochemically aged air mass. Normalized excess enhancement ratios (ERs) were calculated for 20 VOCs and 23 PAHs for three fire influenced samples, and the former were generally consistent with previous observations. To our knowledge, this is the first study to report ER measurements for a number of VOCs and PAHs in fresh North American boreal wildfire plumes. During May the aged wildfire plume intercepted the cities of Edmonton (∼380 km south) or Lethbridge (∼790 km south) on four separate occasions. No enhancement in ground-level ozone (O3) was observed in these aged plumes despite an assumed increase in O3 precursors. In the AOSR, the only daily-averaged VOCs which approached or exceeded the hourly Alberta Ambient Air Quality Objectives (AAAQOs) were benzene (during the fire) and acetaldehyde (on August 16th and 22nd). Implications for local and regional air quality as well as suggestions for supplemental air monitoring during future boreal fires, are also discussed.

5.
Sci Total Environ ; 618: 1665-1676, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29102183

ABSTRACT

An unprecedented wildfire impacted the northern Alberta city of Fort McMurray in May 2016 causing a mandatory city wide evacuation and the loss of 2,400 homes and commercial structures. A two-hectare wildfire was discovered on May 1, grew to ~157,000ha by May 5, and continued to burn an estimated ~590,000ha by June 13. A comprehensive air monitoring network operated by the Wood Buffalo Environmental Association (WBEA) in and around Fort McMurray provided essential health-related real-time air quality data to firefighters during the emergency, and provided a rare opportunity to elucidate the impact of gaseous and particulate matter emissions on near-field communities and regional air pollution concentrations. The WBEA network recorded 188 fire-related exceedances of 1-hr and 24-hr Alberta Ambient Air Quality Objectives. Two air monitoring sites within Fort McMurray recorded mean/maximum 1-hr PM2.5 concentrations of 291/5229µgm-3 (AMS-6) and 293/3259µgm-3 (AMS-7) during fire impact periods. High correlations (r2=0.83-0.97) between biomass combustion related gases (carbon monoxide (CO), non-methane hydrocarbons (NMHC), total hydrocarbons (THC), total reduced sulfur (TRS), ammonia) and PM2.5 were observed at the sites. Filter-based 24-hr integrated PM2.5 samples collected every 6 days showed maximum concentrations of 267µgm-3 (AMS-6) and 394µgm-3 (AMS-7). Normalized excess emission ratios relative to CO were 149.87±3.37µgm-3ppm-1 (PM2.5), 0.274±0.002ppmppm-1 (THC), 0.169±0.001ppmppm-1 (NMHC), 0.104±0.001ppmppm-1 (CH4), 0.694±0.007ppbppm-1 (TRS), 0.519±0.040ppbppm-1 (SO2), 0.412±0.045ppbppm-1 (NO), 1.968±0.053ppbppm-1 (NO2), and 2.337±0.077ppbppm-1 (NOX). A subset of PM2.5 filter samples was analyzed for trace elements, major ions, organic carbon, elemental carbon, and carbohydrates. Sample mass reconstruction and fire specific emission profiles are presented and discussed. Potential fire-related photometric ozone instrument positive interferences were observed and were positively correlated with NO and NMHC.

6.
Sci Total Environ ; 537: 9-22, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26278373

ABSTRACT

Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 µm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (<1.1 µm). These toxic metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 µm and 4.7-5.8 µm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Trace Elements/analysis , Atmosphere/chemistry , China
7.
Phys Chem Chem Phys ; 13(14): 6507-16, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21369566

ABSTRACT

Little is known about the interfacial photochemistry of transition metal cations and chromophores relevant to atmospheric aerosols. We report herein water uptake and in situ surface-sensitive spectroscopic studies on the photosensitized transformation of solid gallic acid (GA), externally mixed with FeCl(3) as a photosensitizer, under dry and humid conditions of <1% and 30% relative humidity (RH), respectively. GA is a hydrolysis product of tannic acid, a model macromolecule for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). Water uptake on GA and GA/FeCl(3) mixture films was quantified using a quartz crystal microbalance (QCM) as a function of %RH (<1-60%). Results indicate continuous multilayer formation of adsorbed water with no phase transitions, with a monolayer of adsorbed water forming around 30 and 12%RH, respectively. Photochemical studies were conducted using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Spectra were collected as a function of irradiation time (4 h), mass fraction of FeCl(3) (0.5-3%) using irradiance of simulated solar light equivalent to 120 Wm(-2) at 555 nm. Difference absorbance spectra show changes to GA functional groups suggesting the formation of organochlorine compounds in the condensed phase with their signature v(C=C) at 1601 cm(-1), and release of CO(2). Potential halogenation pathways of GA in the presence of Fe(3+) are discussed based on well-known aqueous phase chemistry. These pathways along with our results also suggest the release of volatile organochlorine compounds and Cl(2) gas. Apparent first order rate constants, k(s), of the photosensitized reactions were derived from kinetic curves of the most intense positive and negative spectral features at 1601 and 1381 cm(-1), respectively. Values of k(s) at 120 Wm(-2) are found to be higher than those reported from UV photo-Fenton reactions of GA in bulk aqueous phases containing H(2)O(2), Fe(2+) or Fe(3+). The implication of our studies on the aging of multicomponent aerosols containing organic matter, transition metals and halide ions due to heterogeneous photochemistry is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...