Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Int ; 2011: 839872, 2011.
Article in English | MEDLINE | ID: mdl-22091413

ABSTRACT

The neoplastic microenvironment has been recognized to play a critical role in the development of cancer. Although a large body of evidence has established the importance of the cancer microenvironment, the manners of crosstalk between it and the cancer cells still remains unclear. Emerging mechanisms of communication include microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that are involved in the posttranscriptional regulation of mRNA. Both intracellular and circulating miRNAs are differentially expressed in cancer and some of these alterations have been correlated with clinical patient outcomes. The role of miRNAs in the tumor microenvironment has only recently become a focus of research, however. In this paper, we discuss the influence of miRNAs on the tumor microenvironment as it relates to cancer progression. We conclude that miRNAs are a critical component in understanding invasion and metastasis of cancer cells.

2.
J Histochem Cytochem ; 48(10): 1321-30, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10990486

ABSTRACT

We examined ultrastructurally the localization of myocilin (formerly called trabecular meshwork inducible glucocorticoid response, or TIGR) protein in cultured human trabecular meshwork (TM) cells and in normal human TM tissues. The TM, a specialized tissue located at the chamber angle of the eye, is believed to be responsible for the development of glaucoma. The myocilin gene has been directly linked to both juvenile and primary open-angle glaucomas, and multiple mutations have been identified. Human TM cells were treated with 0.1 mM of dexamethasone (DEX) to induce myocilin expression. This protein was immunolocalized by colloidal gold electron microscopy using an anti-human myocilin polyclonal antibody. Double labeling with different sizes of gold particles was also performed with additional monoclonal antibodies specific for cell organelles and structures. In both DEX-treated and untreated cultured cells, myocilin was associated with mitochondria, cytoplasmic filaments, and vesicles. In TM tissues, myocilin was localized to mitochondria and cytoplasmic filaments of TM cells, elastic-like fibers in trabecular beams, and extracellular matrices in the juxtacanalicular region. These results indicate that myocilin is localized both intracellularly and extracellularly at multiple sites. This protein may exert diverse biological functions at different sites.


Subject(s)
Eye Proteins/metabolism , Glycoproteins/metabolism , Trabecular Meshwork/metabolism , Adult , Cells, Cultured , Cytoskeletal Proteins , Dexamethasone/pharmacology , Eye/metabolism , Eye/ultrastructure , Humans , Immunohistochemistry , Microscopy, Electron , Organ Specificity , Trabecular Meshwork/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...