Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 195: 110469, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32179235

ABSTRACT

To explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 µmol L-1), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b. Under Pb and Cd stress, the photosynthetic carbon assimilation capacity of mulberry leaves was reduced, which was a consequence of combined limitations of stomatal and non-stomatal factors. The main non-stomatal factors were decreased photosystem II (PSII) and photosystem I (PSI) activity and carboxylation efficiency (CE). Damage to the donor side of the PSII reaction center was greater than the acceptor side. After being treated with 100 µmol L-1 of Pb and Cd, mulberry leaves continued to be able to dissipate excess excitation energy by starting non-photochemical quenching (NPQ), but when Pb and Cd concentrations were increased to 200 µmol L-1, the protection mechanism that depends on NPQ was impaired. Excessive excitation energy from chloroplasts promoted a great increase of ROS, such as superoxide anion (O2•-) and H2O2. Moreover, under high Pb and Cd stress, superoxide dismutase (SOD) and ascorbate peroxidase (APX) were also inhibited to some extent, and excessive ROS also resulted in a significantly higher degree of oxidative damage. Compared with Cd, the effect of Pb stress at the same concentration level displayed a significantly lower impact on Chl content, photosynthetic carbon assimilation, and stomatal conductance. Meanwhile, Pb stress mainly damaged activity of the oxygen-evolving complex (OEC) located on PSII donor side, but it reduced the electronic pressure on the PSII acceptor side and PSI. Furthermore, under Pb stress, the NPQ, SOD, and APX activity were all significantly higher than those under Cd stress. Thus under Pb stress, the degree of photoinhibition and oxidative damage of PSII and PSI in mulberry leaves were significantly lower than under Cd stress.


Subject(s)
Cadmium/toxicity , Lead/toxicity , Morus/drug effects , Reactive Oxygen Species/metabolism , Ascorbate Peroxidases/metabolism , Chlorophyll/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Hydrogen Peroxide/metabolism , Morus/enzymology , Morus/metabolism , Photosynthesis/drug effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/metabolism , Superoxide Dismutase/metabolism
2.
Front Plant Sci ; 9: 714, 2018.
Article in English | MEDLINE | ID: mdl-29915607

ABSTRACT

This paper selected clonal cutting seedlings from the F1 hybrid varieties of Physocarpus amurensis Maxim (♀) × P. opulifolius "Diabolo" (♂) as research material to study the response of the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of P. amurensis hybrids and their parental leaves to NaCl stress (with concentrations of 0, 50, 100, and 200 mmol⋅L-1). The results showed that under salt stress, the stomatal conductance (Gs), transpiration rate (Tr), and net photosynthetic rate (Pn) of the three kinds of P. amurensis all significantly decreased. When the NaCl concentration was below 100 mmol⋅L-1, the intercellular CO2 concentration (Ci) of leaves of the three samples declined with the increase of salt concentration; however, when the concentration increased to 200 mmol⋅L-1, Ci did not decrease significantly, especially when the Ci of P. opulifolius "Diabolo" presented a slight increase. This indicated that the decline of photosynthetic carbon assimilation capacity induced by salt stress was the consequence of interaction between stomatal factors and non-stomatal factors, and the stomatal factors played an important role when the salt concentration was below 200 mmol⋅L-1. Compared with P. amurensis, the photosynthetic gas exchange capability of P. opulifolius "Diabolo" leaves was more sensitive to salt stress, and the limitation of non-stomatal factors was relatively evident. However, the photosynthetic capacity of hybrid P. amurensis leaves with the desired purple color was improved compared with P. amurensis. Under salt stress, the PSII activity of the three kinds of P. amurensis leaves declined, the electron transfer was inhibited, and obvious signs of photoinhibition were present. The PSII activity of P. opulifolius "Diabolo" leaves was more sensitive to salt stress than that in P. amurensis. Under salt stress, the NPQ of P. opulifolius "Diabolo" leaves decreased greatly, while under high salt concentrations the degree of photoinhibition in P. amurensis and hybrid P. amurensis were reduced due to a relatively high NPQ. With the increase of salt concentration, the Vk of P. amurensis and hybrid P. amurensis leaves presented a decreasing trend. However, the Vk of P. opulifolius "Diabolo" leaves increased slightly. This suggested that the effects of salt stress on the oxygen-evolving complex (OEC) of the three P. amurensis sample types were relatively limited and only the OEC of P.s opulifolius "Diabolo" leaves were slightly sensitive to salt stress. The VJ of all leaves from the three P. amurensis types increased under salt stress, and the VJ increased significantly when the salt concentration increased to 200 mmol⋅L-1, indicating that salt stress obviously impeded the electron transfer chain from QA to QB on the PSII receptor side. Moreover, high salt concentrations caused thylakoid membrane dissociation. The electron transfer and degree of damage to the thylakoid membrane of P. opulifolius "Diabolo" leaves were obviously higher than that of P. amurensis. However, the electron transfer capacity on the PSII receptor side as well as the degree of damage of the thylakoid membrane of hybrid P. amurensis leaves was obviously lower than those of P. opulifolius "Diabolo." The salt tolerance of photosynthetic functions of hybrid P. amurensis (♀) × P. opulifolius "Diabolo" (♂) leaves was improved compared with that of parental P. opulifolius "Diabolo," and the hybrid shows obvious hybrid vigor for photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...