Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 613(7942): 85-89, 2023 01.
Article in English | MEDLINE | ID: mdl-36600063

ABSTRACT

The introduction of volatile-rich subducting slabs to the mantle may locally generate large redox gradients, affecting phase stability, element partitioning and volatile speciation1. Here we investigate the redox conditions of the deep mantle recorded in inclusions in a diamond from Kankan, Guinea. Enstatite (former bridgmanite), ferropericlase and a uniquely Mg-rich olivine (Mg# 99.9) inclusion indicate formation in highly variable redox conditions near the 660 km seismic discontinuity. We propose a model involving dehydration, rehydration and dehydration in the underside of a warming slab at the transition zone-lower mantle boundary. Fluid liberated by dehydration in a crumpled slab, driven by heating from the lower mantle, ascends into the cooler interior of the slab, where the H2O is sequestered in new hydrous minerals. Consequent fractionation of the remaining fluid produces extremely reducing conditions, forming Mg-end-member ringwoodite. This fractionating fluid also precipitates the host diamond. With continued heating, ringwoodite in the slab surrounding the diamond forms bridgmanite and ferropericlase, which is trapped as the diamond grows in hydrous fluids produced by dehydration of the warming slab.

2.
J Synchrotron Radiat ; 26(Pt 5): 1763-1768, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490168

ABSTRACT

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.


Subject(s)
Diamond/chemistry , Synchrotrons , X-Ray Microtomography/methods , Equipment Design , Photons , X-Ray Diffraction
3.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): i15-i16, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23476479

ABSTRACT

Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa-hydrate], is a member of the lanthanite mineral group characterized by the general formula REE2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol-ecules.

4.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 11): i86-i87, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23284315

ABSTRACT

The crystal structure of durangite, ideally NaAl(AsO(4))F (chemical name sodium aluminium arsenate fluoride), has been determined previously [Kokkoros (1938). Z. Kristallogr.99, 38-49] using Weissenberg film data without reporting displacement parameters of atoms or a reliability factor. This study reports the redetermination of the structure of durangite using single-crystal X-ray diffraction data from a natural sample with composition (Na(0.95)Li(0.05))(Al(0.91)Fe(3+) (0.07)Mn(3+) (0.02))(AsO(4))(F(0.73)(OH)(0.27)) from the type locality, the Barranca mine, Coneto de Comonfort, Durango, Mexico. Durangite is isostructural with minerals of the titanite group in the space group C2/c. Its structure is characterized by kinked chains of corner-sharing AlO(4)F(2) octa-hedra parallel to the c axis. These chains are cross-linked by isolated AsO(4) tetra-hedra, forming a three-dimensional framework. The Na(+) cation (site symmetry 2) occupies the inter-stitial sites and is coordinated by one F(-) and six O(2-) anions. The AlO(4)F(2) octa-hedron has symmetry -1; it is flattened, with the Al-F bond length [1.8457 (4) Å] shorter than the Al-O bond lengths [1.8913 (8) and 1.9002 (9) Å]. Examination of the Raman spectra for arsenate minerals in the titanite group reveals that the position of the band originating from the As-O symmetric stretching vibrations shifts to lower wavenumbers from durangite, maxwellite [ideally NaFe(AsO(4))F], to tilasite [CaMg(AsO(4))F].

SELECTION OF CITATIONS
SEARCH DETAIL
...