Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 8(7): 3626-3637, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724625

ABSTRACT

Black chokeberries (Aronia melanocarpa), deciduous shrubs of the Rosaceae family, are native to northeastern North America. Chokeberry fruits are cultivated to make jellies, juices, and wines. Black chokeberry pulp is rich in phenolics and other antioxidants and exhibits potential for health and food packaging benefits. Chokeberries' in vitro antioxidant activity is among the highest values of all berries, though chokeberry extraction techniques frequently employ environmentally unfavorable solvents or are time-inefficient. Batch extraction of antioxidants from chokeberry pomace using supercritical carbon dioxide with an ethanol modifier was used to examine the effects of plant loading, pressure, temperature, and percent ethanol by weight. Effects on total phenolic content (TPC) and the optimal conditions for extractions within these ranges are reported. Multivariate analyses reveal the following relationships of extraction conditions upon TPC: Temperature is directly proportional, percent ethanol by weight is inversely proportional, and chokeberry loads can be increased to enhance antioxidant activity, though not through a linear relationship. In studies involving 0.5 g plant load, the conditions 24.9MPa, 68°C, 90wt-% CO2, and 10wt-% ethanol generated the highest TPC value, 3.42 ± 0.20 mg gallic acid equivalents/gram chokeberry. Chokeberry extracts displayed antiproliferative effects on the SKBr3 breast cancer line and the 52KO MEF line, although TPC was not predictive of cellular responses. HPLC-MS data suggest cyanidin hexose and cyanidin pentose compounds as well as quercetin deoxyhexose-hexose as components of the more favorable extraction product that reflected a significant decrease in viability for the extract in comparison with ethanol control in the SKBr3 breast cancer line.

2.
Food Sci Nutr ; 8(1): 612-619, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993184

ABSTRACT

Walnuts are commonly cultivated for their kernel, which is a rich source of antioxidant phenolic compounds. The husk likewise contains antioxidant and antimicrobial compounds, but is typically discarded without further processing. Antioxidant compounds are useful in creating active packaging films, but typically decompose at melt extrusion temperatures in polymer processing. Due to carbon dioxide's low critical point and ability to swell polymer films, supercritical carbon dioxide may be used to impregnate phenolic compounds into polymers. For this study, a novel technique is used to simultaneously produce walnut husk extracts and impregnate the extract into polymer films in the same batch extractor using supercritical carbon dioxide with a 15 wt-% ethanol modifier at 60°C at 19.4 MPa. The effect of varying the loading of walnut husk in the extractor upon impregnation mass was evaluated with the impregnation mass of the film increasing with walnut husk loading. It was determined by FTIR, as well as the reduction of the protein cytochrome c, that antioxidant compounds may be extracted from walnut husks and impregnated into low-density polyethylene film (LDPE) by this technique.

3.
Food Sci Nutr ; 5(2): 223-232, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28265357

ABSTRACT

The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

4.
Food Sci Nutr ; 3(6): 569-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26788298

ABSTRACT

Grapes are widely known for health benefits due to their antioxidant content. In wine production, grape stems are often discarded, though they has a higher content of antioxidants than the juice. The effectiveness of using an environmentally friendly solvent, ethanol, as a superheated liquid and supercritical fluid to extract antioxidant compounds from grape stems of organically grown Crimson Seedless grapes was evaluated. The Ferric Reducing Ability of Plasma (FRAP) assay and the Total Phenolic Content (TPC), or Folin-Ciocalteu assay, were used to quantify the antioxidant power of grape stem extracts. The extractions were performed at temperatures between 160°C and 300°C at constant density. It was found that the optimal extraction temperature was 204°C, at superheated liquid conditions, with a FRAP value of 0.670 mmol Trolox Equivalent/g of dry grape stem. The FRAP values were higher than other studies that extracted antioxidants from grape stems using single-pass batch extraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...