Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
HNO ; 52(6): 510-7, 2004 Jun.
Article in German | MEDLINE | ID: mdl-15257396

ABSTRACT

INTRODUCTION: In reconstructive surgery, the integration of tissue-engineered cartilage in a prefabricated free flap may make it possible to generate flaps combining a variety of tissue components to meet the special requirements of a particular defect. The aim of the present study was to establish the technique of prefabricating a microvascular free flap by implanting a vessel loop under a skin flap in a rabbit model. The second aim was to gather experience with prelaminating the flap with autologous tissue-engineered cartilage in terms of matrix development, inflammatory reaction and host-tissue interaction. METHODS: The microvascular flap was created by implanting a vessel loop under a random pattern abdominal skin flap. The tissue-engineered cartilage constructs were made by isolating chondrocytes from auricular biopsies. Following a period of amplification, the cells were seeded onto a non-woven scaffold made of a hyaluronic acid derivative and cultivated for 2-3 weeks. One cell-biomaterial construct was placed beneath the prefabricated flap, and the others were placed subcutaneously under the abdominal skin and intermuscularly at the lower extremity. In addition, a biomaterial sample without cells was placed subcutaneously as a control. All implanted specimens were left in position for 6 or 12 weeks. After explantation, the specimens were examined by histological and immunohistological methods. The prefabricated flap was analyzed by angiography. RESULTS: The prefabricated flaps showed a well-developed network of blood vessels formed by neovascularization between the implanted vessel loop and the original random-pattern blood supply. The tissue-engineered constructs remained stable in size and showed signs of tissue similar to hyaline cartilage, as evidenced by the expression of cartilage-specific collagen type II and proteoglycans. No hints of inflammatory reactions were observed. CONCLUSION: These results show the potential of prefabricated flaps as custom-made flaps for reconstructive surgery in difficult circumstances, more or less independent of anatomical prerequisites. Cartilage tissue engineering provides a 3-dimensional structure with minimal donor-site morbidity.


Subject(s)
Cartilage/growth & development , Cartilage/transplantation , Foreign-Body Reaction/pathology , Surgical Flaps/pathology , Tissue Engineering/methods , Animals , Cartilage/pathology , Cell Culture Techniques/methods , Graft Rejection/pathology , Rabbits , Plastic Surgery Procedures/methods , Surgical Flaps/adverse effects , Transplants/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...