Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Struct Dyn ; 6(2): 024102, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31065571

ABSTRACT

Crucial for the field of ultrafast electron microscopy is the creation of sub-picosecond, high brightness electron pulses. The use of a blanker to chop the beam that originates from a high brightness Schottky source may provide an attractive alternative to direct pulsed laser illumination of the source. We have recently presented the concept of a laser-triggered ultrafast beam blanker and argued that generation of 100 fs pulses could be possible [Weppelman et al., Ultramicroscopy 184, 8-17 (2017)]. However, a detailed analysis of the influence of a deflection field changing sign on sub-picoseconds time scale on the quality of the resulting electron pulses has so far been lacking. Here, we present such an analysis using time-dependent, three-dimensional numerical simulations to evaluate the time-evolution of deflection fields in and around a micrometers-scale deflector connected to a photo-conductive switch. Further particle tracing through the time-dependent fields allows us to evaluate beam quality parameters such as energy spread and temporal broadening. We show that with a shielded, "tunnel-type" design of the beam blanker limiting the spatial extent of fringe fields outside the blanker, the blanker-induced energy spread can be limited to 0.5 eV. Moreover, our results confirm that it could be possible to bring laser-triggered 100 fs focused electron pulses on the sample using a miniaturized ultrafast beam blanker. This would enable us to resolve ultrafast dynamics using focused electron pulses in an SEM or STEM.

2.
Ultramicroscopy ; 184(Pt B): 8-17, 2018 01.
Article in English | MEDLINE | ID: mdl-29059564

ABSTRACT

We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...