Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 261: 110206, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148276

ABSTRACT

Green roofs are expanding internationally due to the well documented benefits they provide for buildings and cities. This requires transferable knowledge of the technological aspects influencing green roof design, particularly substrate properties. However, this is made difficult due to differences in substrate testing methods referred to in green roof guidelines and standards. Therefore, we tested a green roof substrate using laboratory-based methods from European (FLL), North American (ASTM) and Australian (AS) green roof guidelines and standards to determine how these methods vary in characterising substrate physical properties (bulk density, water permeability and water holding capacity at field capacity (WHC)). Further, we compared the results from the laboratory-based methods with measures of bulk density and WHC in green roof platforms to determine whether standard methods accurately represent substrate properties in-situ. Results from the standard test methods varied due to differences in sample compaction. The standard test methods that employ Proctor hammer compaction (FLL and ASTM) had greater bulk density (at field capacity and dry) and lower water permeability than Australian standard methods that employ free-fall compaction. WHC did not differ among the standard methods. The Australian standard method better reflected bulk density at field capacity and WHC of the substrate under in-situ green roof conditions. For mineral based substrates, our results suggest that for the FLL and ASTM testing methods, a single Proctor hammer drop will produce a degree of sample compaction equivalent to the free-fall method (AS) and be more representative of bulk density in-situ. Subtle changes in testing procedures would allow for more direct comparison of substrate properties between standard methods and help enable the international transfer of knowledge for substrate design.


Subject(s)
Conservation of Natural Resources , Australia , Cities
2.
Sci Total Environ ; 705: 135856, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31831248

ABSTRACT

Soil water limitations often restrict plant growth in unirrigated agricultural, forestry and urban systems. Biochar amendment to soils can increase water retention, but not all of this additional water is necessarily available to plants. Differences in the effectiveness of biochar in ameliorating soil water limitations may be a result of differences in feedstock cell structure. Previous research has shown that feedstock cell structure influences the pore structure of biochar and consequently the volume available for water storage. The availability of this water for plant uptake will be determined by biochar pore diameters, given its role in determining capillary forces which plants must overcome to access pore water. Therefore, we hypothesized that differences in hardwood feedstock cell structure would result in differences in the plant available water holding capacity of biochar. Before pyrolysis, we measured the wood morphology of 18 Eucalyptus species on three replicates of equal age on a gradient of wood density (572-960 kg m-3). Wood samples were then pyrolysed (550 °C) and the resulting biochars were sieved and their particle size distribution was standardised before their physical properties, including water holding capacity, plant available water and bulk density were measured. Our results show that biochar made from lower density eucalypt wood had up to 35% greater water holding capacity and up to 45% greater plant available water than biochar made from higher density eucalypt wood. Further, feedstock wood density related well to fibre cell wall thickness and fibre lumen diameter. Therefore, wood density could be used as a proxy for wood cell structure, which can in turn be used to predict plant available water in biochar. The simple measure of feedstock wood density can inform feedstock choices for producing biochars with greater plant available water, optimal for the use as soil amendment in water limited environments.


Subject(s)
Wood , Charcoal , Soil , Water
3.
Sci Total Environ ; 625: 775-781, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29306165

ABSTRACT

Green roofs are increasingly being considered a promising engineered ecosystem for reducing stormwater runoff. Plants are a critical component of green roofs and it has been suggested that plants with high water use after rainfall, but which are also drought tolerant, can improve rainfall retention on green roofs. However, there is little evidence to show how plants with different water use strategies will affect green roof retention performance, either in monocultures or in mixed plantings. This study tested how monocultures and a mixture of herbaceous species (Dianella admixta, Lomandra longifolia and Stypandra glauca) affected rainfall retention on green roofs. These species were chosen based on their water use strategies and compared with a commonly used succulent species (Sedum pachyphyllum) with conservative water use. We measured retention performance for 67 rainfall events, quantifying all components of the water balance. We also compared growth for species in monocultures and mixtures. We found that monocultures of L. longifolia had the greatest stormwater retention and ET. Although S. glauca has a similar water use strategy to D. admixta, it had the lowest stormwater retention and ET. In both the mixture and as a monoculture, S. glauca created preferential flow pathways, resulting in lower substrate water contents which reduced ET and therefore rainfall retention. This species also dominated performance of the mixture, such that the mixture had lower ET and retention than all monocultures (except S. glauca). We suggest that root traits and their interaction with substrates should be considered alongside water use strategies for rainfall retention on green roofs.


Subject(s)
Conservation of Natural Resources , Ecosystem , Facility Design and Construction , Water Movements , Plants/classification , Rain , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...