Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
CBE Life Sci Educ ; 18(3): ar38, 2019 09.
Article in English | MEDLINE | ID: mdl-31418655

ABSTRACT

Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5-1.7 times greater than the odds for a matched group of students from UM's traditional biology labs. The authenticity of UMARL may have fostered students' confidence that they can do real research, reinforcing their persistence in STEM.


Subject(s)
Biology/education , Curriculum , Laboratories , Research/education , Students , Humans , Learning , Odds Ratio , Propensity Score
2.
J Vis Exp ; (145)2019 03 26.
Article in English | MEDLINE | ID: mdl-30985758

ABSTRACT

Arbuscular mycorrhizal (AM) fungi influence plant mineral nutrient uptake and growth, hence, they have the potential to influence plant interactions. The power of their influence is in extraradical mycelia that spread beyond nutrient depletion zones found near roots to ultimately interconnect individuals within a common mycorrhizal network (CMN). Most experiments, however, have investigated the role of AM fungi in plant interactions by growing plants with versus without mycorrhizal fungi, a method that fails to explicitly address the role of CMNs. Here, we propose a method that manipulates CMNs to investigate their role in plant interactions. Our method uses modified containers with conical bottoms with a nylon mesh and/or hydrophobic material covering slotted openings, 15N fertilizer, and a nutrient-poor interstitial sand. CMNs are left either intact between interacting individuals, severed by rotation of containers, or prevented from forming by a solid barrier. Our findings suggest that rotating containers is sufficient to disrupt CMNs and prevent their effects on plant interactions across CMNs. Our approach is advantageous because it mimics aspects of nature, such as seedlings tapping into already established CMNs and the use of a suite of AM fungi that may provide diverse benefits. Although our experiment is limited to investigating plants at the seedling stage, plant interactions across CMNs can be detected using our approach which therefore can be applied to investigate biological questions about the functioning of CMNs in ecosystems.


Subject(s)
Host-Pathogen Interactions , Mycorrhizae/physiology , Plant Roots/microbiology , Seedlings/microbiology , Ecosystem , Plant Roots/growth & development , Plastics , Seedlings/growth & development
3.
Mycorrhiza ; 28(1): 71-83, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28986642

ABSTRACT

Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.


Subject(s)
Andropogon/microbiology , Elymus/microbiology , Mycorrhizae/physiology , Andropogon/growth & development , Biomass , Elymus/growth & development , Grassland
4.
Ecol Evol ; 6(12): 3977-90, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27516857

ABSTRACT

Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm-season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool-season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root-to-shoot ratios. Unlike other highly dependent species, A. gerardii had a high root-to-shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root-to shoot ratio than A. gerardii. The mycorrhiza-related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and can be influenced by both mycorrhizal fungus species and soil fertility.

5.
New Phytol ; 212(2): 461-71, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27265515

ABSTRACT

Arbuscular mycorrhizal (AM) fungi interconnect plants in common mycorrhizal networks (CMNs) which can amplify competition among neighbors. Amplified competition might result from the fungi supplying mineral nutrients preferentially to hosts that abundantly provide fixed carbon, as suggested by research with organ-cultured roots. We examined whether CMNs supplied (15) N preferentially to large, nonshaded, whole plants. We conducted an intraspecific target-neighbor pot experiment with Andropogon gerardii and several AM fungi in intact, severed or prevented CMNs. Neighbors were supplied (15) N, and half of the target plants were shaded. Intact CMNs increased target dry weight (DW), intensified competition and increased size inequality. Shading decreased target weight, but shaded plants in intact CMNs had mycorrhizal colonization similar to that of sunlit plants. AM fungi in intact CMNs acquired (15) N from the substrate of neighbors and preferentially allocated it to sunlit, large, target plants. Sunlit, intact CMN, target plants acquired as much as 27% of their nitrogen from the vicinity of their neighbors, but shaded targets did not. These results suggest that AM fungi in CMNs preferentially provide mineral nutrients to those conspecific host individuals best able to provide them with fixed carbon or representing the strongest sinks, thereby potentially amplifying asymmetric competition below ground.


Subject(s)
Andropogon/metabolism , Andropogon/microbiology , Host-Pathogen Interactions , Minerals/metabolism , Mycorrhizae/physiology , Analysis of Variance , Biomass , Host-Pathogen Interactions/physiology , Manganese/metabolism , Nitrogen/metabolism , Plant Roots/anatomy & histology
6.
Appl Plant Sci ; 4(4)2016 Apr.
Article in English | MEDLINE | ID: mdl-27144103

ABSTRACT

PREMISE OF THE STUDY: The Million Orchid Project at Fairchild Tropical Botanic Garden is an initiative to propagate native orchids for reintroduction into Miami's urban landscapes. The aim of this study was to develop microsatellites for Encyclia tampensis and Cyrtopodium punctatum (Orchidaceae). METHODS AND RESULTS: Ten microsatellites were developed for each species. For E. tampensis sampled from the natural population, allele numbers ranged from one to four, with an average observed heterozygosity (H o) of 0.314 and average expected heterozygosity (H e) of 0.281. For the individuals from cultivation, allele numbers ranged from one to six, with an average H o of 0.35 and an average H e of 0.224. For C. punctatum, allele numbers ranged from one to three, with an average H o of 0.257 and an average H e of 0.272. CONCLUSIONS: These microsatellites will be used to assess the genetic diversity of natural and cultivated populations with the intention of guiding genetic breeding under the Million Orchid Project.

7.
New Phytol ; 198(1): 203-213, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23356215

ABSTRACT

Arbuscular mycorrhizal fungi can interconnect plant root systems through hyphal common mycorrhizal networks, which may influence the distribution of limiting mineral nutrients among interconnected individuals, potentially affecting competition and consequent size inequality. Using a microcosm model system, we investigated whether the members of Andropogon gerardii monocultures compete via common mycorrhizal networks. We grew A. gerardii seedlings with isolated root systems in individual, adjacent containers while preventing, disrupting or allowing common mycorrhizal networks among them. Fertile soil was placed within the containers, which were embedded within infertile sand. We assessed mycorrhizas, leaf tissue mineral nutrient concentrations, size hierarchies and the growth of nearest neighbors. Plants interconnected by common mycorrhizal networks had 8% greater colonized root length, 12% higher phosphorus and 35% higher manganese concentrations than plants severed from common mycorrhizal networks. Interconnected plants were, on average, 15% larger and had 32% greater size inequality, as reflected by Gini coefficients, than those with severed connections. Only with intact common mycorrhizal networks were whole-plant dry weights negatively associated with those of their neighbors. In the absence of root system overlap, common mycorrhizal networks likely promote asymmetric competition below ground, thereby exaggerating size inequality within A. gerardii populations.


Subject(s)
Andropogon/growth & development , Andropogon/microbiology , Mycorrhizae/physiology , Analysis of Variance , Andropogon/anatomy & histology , Biomass , Colony Count, Microbial , Germination , Mycorrhizae/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Principal Component Analysis , Seedlings/growth & development , Seedlings/microbiology , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...