Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 109(1): 63-74, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11163345

ABSTRACT

The lipid head groups in the inner leaflet of unilamellar bilayer vesicles of the synthetic lipids DHPBNS and DDPBNS can be selectively oligomerised. Earlier studies have established that these vesicles fuse much slower and less extensively upon oligomerisation of the lipid head groups. The morphology and calcium-induced fusion of vesicles of DHPBNS and DDPBNS were investigated using cryo-electron microscopy. DHPBNS vesicles are not spherical but flattened, ellipsoidal structures. Upon addition of CaCl(2), DHPBNS vesicles with an oligomerised inner leaflet were occasionally observed in an arrested hemifused state. However, the evidence for hemifusion is not equivocal due to potential artefacts of sample preparation. DDPBNS vesicles show the expected spherical morphology. Upon addition of excess CaCl(2), DDPBNS vesicles fuse into dense aggregates that show a regular spacing corresponding to the bilayer width. Upon addition of EDTA, the aggregates readily disperse into large unilamellar vesicles. At low concentration of calcium ion, DDPBNS vesicles with an oligomerised inner leaflet form small multilamellar aggregates, in which a spacing corresponding to the bilayer width appears. Addition of excess EDTA results in slow dispersal of the Ca2+-lipid aggregates into a heterogeneous mixture of bilamellar, spherical vesicles and networks of thread-like vesicles. These lipid bilayer rearrangements are discussed within the context of shape transformations and fusion of lipid membranes.


Subject(s)
Calcium/chemistry , Lipid Bilayers , Microscopy, Electron , Polymers/chemistry
2.
Cell Biol Int ; 24(11): 787-97, 2000.
Article in English | MEDLINE | ID: mdl-11067763

ABSTRACT

Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.


Subject(s)
Lipids/immunology , Membrane Fusion/physiology , Membrane Lipids/metabolism , Respirovirus/metabolism , Viral Fusion Proteins/metabolism , Calorimetry/methods , Cell Membrane/virology , Lipids/chemistry , Microscopy, Electron/methods , Molecular Structure , Respirovirus/physiology , Respirovirus/ultrastructure , Titrimetry
3.
Biophys J ; 76(1 Pt 1): 374-86, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9876149

ABSTRACT

Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.


Subject(s)
Membrane Fusion , Membrane Lipids/chemistry , Biophysical Phenomena , Biophysics , Calcium/pharmacology , Diffusion , Edetic Acid/pharmacology , In Vitro Techniques , Lipid Bilayers/chemistry , Liposomes , Magnetic Resonance Spectroscopy , Membrane Fusion/drug effects , Membrane Fusion/physiology , Microscopy, Electron , Models, Biological , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...