Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 380(1-3): 188-95, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17258793

ABSTRACT

The purpose of the present investigation has been to develop a tracer suite that has application in in-situ assessment and optimization of physical and biological removal and elimination mechanisms of pathogens within laboratory scale biological treatment systems. The tracer suite includes three pathogen indicators, namely, a conserved non-viable particle (fluorescently labelled microspheres, FLM), a non-conserved non-viable particle (fluorescently labelled bioparticles, FLB), and a non-conserved viable particle (Nalidixic acid resistant E. coli, NAREC). The tracer triplet principles were developed with practical experiments on planted, and unplanted subsurface flow wetland mesocosms treating a synthetic domestic wastewater. The tracers monitor for physical removal mechanisms (FLM), elimination activity (FLB), and removal thresholds (NAREC). FLM enumeration was simplified by calibration of particle concentration with respect to acetone-extractable fluorescence. Similarly, FLB elimination was assessed by bulk fluorescence using two characteristic excitation-emission wavelength pairs: 494/519 and 220/319 nm. NAREC results indicated that first order removal kinetics may only proceed down to limiting threshold concentrations.


Subject(s)
Environmental Monitoring/methods , Escherichia coli/growth & development , Water Microbiology , Water Pollutants/metabolism , Wetlands , Biodegradation, Environmental , Biomass , Escherichia coli/metabolism , Fluorescence , Microspheres , Poaceae/metabolism , Waste Disposal, Fluid/methods , Water Movements , Water Pollutants/analysis , Water Purification/methods
2.
Water Res ; 37(9): 2162-72, 2003 May.
Article in English | MEDLINE | ID: mdl-12691902

ABSTRACT

This investigation introduces the application of a relatively rapid technique to obtain information about the dynamic nature of microbial communities in activated sludge. The objective has been to consider variability due to measurement errors and protocol changes within the same quantitative framework as the analysis of systematic differences in microbial communities in large-scale aerobic activated sludge secondary wastewater treatment systems. Adjustments to the methodology were considered due to their potential for simplifying and shortening the analysis procedure. All modifications to the protocols used to assay the composition of microbial fatty acids (MFAs) of activated sludge imposed some bias to the chromatographic data. This methodological bias was similar in magnitude to the level of discrimination between activated sludge microbial community structures that were considered as part of the present study. MFA analysis supported the expectations of subtle but systematic community structure differences and shifts in activated sludge based on the current understanding of these wastewater treatment systems. A standardized MFA methodology was shown to be sensitive to minor systematic changes in activated sludge communities due the anticipated underlying factors of selective pressures from the process configuration, history, operational conditions and/or nutrient status. The chemometric approach of fatty acid isopropyl ester analysis of activated sludge can provide a routine tool for meaningful and quantitative information of changes in activated sludge quality in full-scale treatment systems.


Subject(s)
Fatty Acids/analysis , Sewage/microbiology , Waste Disposal, Fluid , Bacteria, Aerobic , Environmental Monitoring , Esters/analysis , Fatty Acids/chemistry , Population Dynamics , Quality Control , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...